Event
Biological systems flourish through collective functionality, by self-assembling into cells, tissues, flocks and parliaments. Understanding this multi-scale organization also lies at the heart of modern engineering and medicine: Pathologies can arise from deficiencies in collective functionality, while active and adaptive materials can be designed from controlling systems out of equilibrium. In this talk, I will overview our recent work on building first-principle theories, numerical tools, and experiments for studying the fascinating physics of life. We will first focus on reliable communication in ultra-fast biology, exemplified by the discovery of ‘hydrodynamic trigger waves’ [1]. Second, we will discuss bacterial contamination dynamics, which is enhanced by the ability of cells to swim against flows [2]. Third, we consider the role of topology in biofunctionality, especially in ‘active carpets’ like ciliary arrays [3]. These insights open up exciting new avenues towards unravelling synthetic and biological active matter, through collective functionality, together.