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In order to survive, reproduce, and !in multicellular organisms" differentiate, cells must control the concen-
trations of the myriad different proteins that are encoded in the genome. The precision of this control is limited
by the inevitable randomness of individual molecular events. Here we explore how cells can maximize their
control power in the presence of these physical limits; formally, we solve the theoretical problem of maximiz-
ing the information transferred from inputs to outputs when the number of available molecules is held fixed.
We start with the simplest version of the problem, in which a single transcription factor protein controls the
readout of one or more genes by binding to DNA. We further simplify by assuming that this regulatory network
operates in steady state, that the noise is small relative to the available dynamic range, and that the target genes
do not interact. Even in this simple limit, we find a surprisingly rich set of optimal solutions. Importantly, for
each locally optimal regulatory network, all parameters are determined once the physical constraints on the
number of available molecules are specified. Although we are solving an oversimplified version of the problem
facing real cells, we see parallels between the structure of these optimal solutions and the behavior of actual
genetic regulatory networks. Subsequent papers will discuss more complete versions of the problem.
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I. INTRODUCTION

Much of the everyday business of organisms involves the
transmission and processing of information. On our human
scale, the familiar examples involve the signals taken in
through our sense organs #1$. On a cellular scale, information
flows from receptors on the cell surface into the cell, modu-
lating biochemical events and ultimately controlling gene ex-
pression #2$. In the course of development in multicellular
organisms, individual cells acquire information about their
location in the embryo by responding to particular “morpho-
gen” molecules whose concentration varies along the main
axes of the embryo #3,4$. In all these examples, information
of interest to the organism ultimately is represented by
events at the molecular level, whether the molecules are tran-
scription factors regulating gene expression or ion channels
controlling electrical signals in the brain. This representation
is limited by fundamental physical principles: individual mo-
lecular events are stochastic, so that with any finite number
of molecules there is a limit to the precision with which
small signals can be discriminated reliably and there is a
limit to the overall dynamic range of the signals. Our goal in
this paper !and its sequel" is to explore these limits to infor-
mation transmission in the context of small genetic control
circuits.

The outputs of genetic control circuits are protein mol-
ecules that are synthesized by the cell from messenger RNA
!mRNA", which in turn is transcribed from the DNA tem-
plate. The inputs often are protein molecules as well, “tran-

scription factors” that bind to the DNA and regulate the syn-
thesis of the mRNA. In the last decade, a number of
experiments have mapped the input/output relations of these
regulatory elements and characterized their noise, that is, the
fluctuations in the output protein concentration when the in-
puts are held fixed #5–17$. In parallel, a number of theoreti-
cal papers have tried to understand the origins of this noise,
which ultimately reflects the random behavior of individual
molecules along the path from input to output—the arrival of
transcription factors at their targets along the DNA, the ini-
tiation of transcription and the degradation of mRNA, and
the initiation of protein synthesis and the degradation of the
output proteins #18–29$. While open questions remain, it
seems fair to say that we have a physical picture of the noise
in genetic control that we can use to ask questions about the
overall function and design of these systems.

The ability of any system to transmit information is de-
termined not just by input/output relations and noise levels,
but also by the distribution of inputs; maximal information
transmission requires a matching between the intrinsic prop-
erties of the system and the input statistics #30,31$. In the
context of sensory information processing, these matching
conditions have been explored almost since the inception of
information theory #32–35$. In particular, because the distri-
bution of sensory inputs varies with time, optimal informa-
tion transmission requires that the input/output relation track
or adapt to these variations and this theoretical prediction has
led to a much richer view of adaptation in the neural code
#36–40$. There are analogous matching conditions for ge-
netic regulatory elements and these conditions provide pa-
rameter free predictions about the behavior of the system
based on the idea that cells are trying to transmit the maxi-
mum amount of information #41$. Comparison with recent
experiments has been encouraging #42$.
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In this paper we go beyond the matching conditions to ask
how cells can adjust the input/output relations of genetic
regulatory elements so as to maximize the information that is
transmitted through these systems. Absent any constraints,
the answer will always be to make more molecules, since
this reduces the effective noise level, so we consider the
problem of maximizing information transmission with a
fixed mean or maximum number of molecules at both the
input and the output. In this sense we are asking how cells
can extract the maximum control power, measured in bits,
from a given number of molecules, thus optimizing function-
ality under clear physical constraints. In general this problem
is very difficult, so we start here with the simplest case of a
single input transcription factor that controls !potentially"
many genes, but there is no interaction among these outputs.
Further, we focus on a limit !small noise" where some ana-
lytic progress is possible. We will see that, even in this case,
the optimal solutions have an interesting structure, which
emerges as a result of the interplay between noise sources at
the input and the output of the regulatory elements. For other
approaches to the optimization of information transmission
in biochemical and genetic networks, see Refs. #43–45$.

Optimization of information transmission is a concise, ab-
stract principle grounded in the physics of the molecular in-
teractions that underlie biological function. It would be at-
tractive if we could derive the behavior of biological systems
from such a principle rather than taking the myriad param-
eters of these systems simply as quantities that must be fit to
data. It is not at all clear, however, that such a general prin-
ciple should apply to real biological systems. Indeed, it is
possible that solutions to our optimization problem are far
from plausible in comparison with what we find in real cells.
Thus, our most important result is that the parameters which
we derive are reasonable in relation to experiment. While a
realistic comparison requires us to solve the optimization
problem in a fully interacting system, even in the simpler
problem discussed here we can see the outlines of a theory
for real genetic networks. Subsequent papers will address the
full, interacting version of the problem.

II. FORMULATING THE PROBLEM

A gene regulatory element translates the concentration of
input molecules I into output molecules O. We would like to
measure, quantitatively, how effectively changes in the input
serve to control the output. If we make many observations on
the state of the cell, we will see that inputs and outputs are
drawn from a joint distribution p!I ,O" and our measure of
control power should be a functional of this distribution. In
his classic work, Shannon showed that there is only one such
measure of control power which obeys certain plausible con-
straints and this is the mutual information between I and O
#30,46$.

To be concrete, we consider a set of genes,
i=1,2 , . . . ,M, that all are controlled by a single transcription
factor. Let the concentration of the transcription factor be c
and let the levels of protein expressed from each gene be gi;
below we discuss the units and normalization of these quan-
tities. Thus, the input I%c and the output O%&gi'. In prin-

ciple these quantities all depend on time. We choose to focus
here on the steady-state problem, where we assume that the
output expression levels reach their equilibrium values be-
fore the input transcription factor concentrations change.

We view the steady-state approximation not necessarily as
an accurate model of the dynamics in real cells, but as a
useful starting point, and already the steady-state problem
has a rich structure. In particular, as we will see, in this limit
we have analytic control over the role of nonlinearities in the
input/output relation describing the function of the different
regulatory elements in our network. In contrast, most ap-
proaches to information transmission by dynamic signals are
limited to the regime of linear response; see, for example,
Ref. #45$. Although we are focused here on information
transmission in genetic circuits, it is interesting that the same
dichotomy—nonlinear analyses of static networks and dy-
namic analyses of linear networks—also exists in the litera-
ture on information transmission in neural networks #34,35$.

To specify the joint distribution of inputs and outputs, it is
convenient to think that the transcription factor concentration
is being chosen out of a probability distribution PTF!c" and
then the target genes respond with expression levels chosen
out of the conditional distribution P!&gi' (c". In general, the
mutual information between the set of expression levels &gi'
and the input c is given by #30,31$

I!&gi';c" =) dc) dMgP!c,&gi'"log2* P!c,&gi'"
PTF!c"P!&gi'"

+ ,

!1"

where the overall distribution of expression levels is given
by

P!&gi'" =) dcPTF!c"P!&gi'(c" . !2"

Shannon’s uniqueness theorem of course leaves open a
choice of units and here we make the conventional choice of
bits, hence, the logarithm is base 2.

We will approach the problem of optimizing information
transmission in two steps. First, we will adjust the distribu-
tion PTF!c" to take best advantage of the input/output rela-
tions and then we will adjust the input/output relations them-
selves. Even the first step is difficult in general, so we start
by focusing on the limit in which noise is small.

A. Information in the small noise limit

As noted in Sec. I, we will confine our attention in this
paper to the case where each gene responds independently to
its inputs and there are no interactions among the output
genes; we point toward generalizations in Sec. V below
and return to the more general problem in subsequent papers.
The absence of interactions means that the conditional
distribution of expression levels must factorize, P!&gi' (c"
=,i=1

M Pi!gi (c". Further, we assume that the noise in expres-
sion levels is Gaussian. Then we have #47$
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P!&gi'(c" = exp-−
M

2
ln!2"" −

1
2.

i=1

M

ln##i
2!c"$

−
1
2.

i=1

M
1

#i
2!c"

#gi − ḡi!c"$2/ . !3"

The input/output relation of each gene is defined by the mean
ḡi!c", while #i

2 measures the variance of the fluctuations or
noise in the expression levels at fixed input,

#i
2!c" = 0#gi − ḡi!c"$21 . !4"

In the limit that the noise levels #i are small, we can develop
a systematic expansion of the information I!&gi' ;c" general-
izing the approach of Refs. #41,42$. The key idea is that, in
the small noise limit, observation of the output expression
levels &gi' should be sufficient to determine the input con-
centration c with relatively high accuracy; further, we expect
that errors in this estimation process would be well approxi-
mated as Gaussian. Formally, this means that we should have

P!c(&gi'" 2
1

32"#c
2!&gi'"

exp*−
#c − c!!&gi'"$2

2#c
2!&gi'"

+ , !5"

where c!!&gi'" is the most likely value of c given the outputs
and #c

2!&gi'" is the variance of the true value around this
estimate. We can use this expression to calculate the infor-
mation by writing I!&gi' ;c" as the difference between two
entropies:

I!&gi';c" = −) dcPTF!c"log2 PTF!c" −) dMgP!&gi'"

$*−) dcP!c(&gi'"log2 P!c(&gi'"+ !6"

=−) dcPTF!c"log2 PTF!c"

−
1
2) dMgP!&gi'"log2#2"e#c

2!&gi'"$ . !7"

Intuitively, the first term is the entropy of inputs, which sets
an absolute maximum on the amount of information that can
be transmitted #48$; the second term is !minus" the entropy
of the input given the output or the “equivocation” #30$ that
results from noise in the mapping from inputs to outputs. To
complete the calculation we need an expression for this ef-
fective noise level #c.

Using Bayes’ rule, we have

P!c(&gi'" =
P!&gi'(c"PTF!c"

P!&gi'"
!8"

=
1

Z!&gi'"
exp#− F!c,&gi'"$ , !9"

where

F!c,&gi'" = − ln PTF!c" +
1
2.

i=1

M

ln##i
2!c"$

+
1
2.

i=1

M
1

#i
2!c"

#gi − ḡi!c"$2. !10"

Now it is clear that c!!&gi'" and #c!&gi'" are defined by

0 = 4 !F!c,&gi'"
!c

4
c=c!!&gi'"

, !11"

1

#c
2!&gi'"

= 4 !2F!c,&gi'"
!c2 4

c=c!!&gi'"
. !12"

The leading term at small #i is then given by

1

#c
2!&gi'"

= .
i=1

M 4 1

#i
25dḡi!c"

dc
624

c=c!!&gi'"
. !13"

Finally, we note that, in the small noise limit, averages
over all the expression levels can be approximated by an
integral along the trajectory of mean expression levels with
an appropriate Jacobian. More precisely,

) dMgP!&gi'"# ¯ $ 2 ) dcPTF!c",
i=1

M

%„gi − ḡi!c"…# ¯ $ .

!14"

Putting all these terms together, we have

I!&gi';c" = −) dcPTF!c"log2 PTF!c"

+
1
2) dcPTF!c"log2* 1

2"e.
i=1

M
1

#i
2!c"

5dḡi!c"
dc

62+ .

!15"

The small noise approximation is not just a theorist’s con-
venience. A variety of experiments show that fluctuations in
gene expression level can be 10%–25% of the mean
#5,9,10,13,14,17$. As noted above, maximizing information
transmission requires matching the distribution of input sig-
nals to the structure of the input/output relations and noise,
and in applying these conditions to a real regulatory element
in the fruit fly embryo it was shown that the !analytically
accessible" small noise approximation gives results which
are in semiquantitative agreement with the !numerical" exact
solutions #42$. Thus, although it would be interesting to ex-
plore the quantitative deviations from the small noise limit,
we believe that this approximation is a good guide to the
structure of the full problem.

To proceed, Eq. !15" for the information in the small noise
limit instructs us to compute the mean response ḡi!c" and the
noise #i!c" for every regulated gene. Since the properties of
noise in gene expression determine to a large extent the
structure of optimal solutions, we present in Sec. II B a de-
tailed description of these noise sources. In Sec. II C we then
introduce the “cost of coding” measured by the number of
signaling molecules that the cell has to pay to transmit the
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information reliably. Finally, we look for optimal solutions in
Sec. III.

B. Input/output relations and noise

Transcription factors act by binding to DNA near the
point at which the “reading” of a gene begins, and either
enhancing or inhibiting the process of transcription into
mRNA. In bacteria, a simple geometrical view of this pro-
cess seems close to correct and one can try to make a de-
tailed model of the energies for binding of the transcription
factor!s" and the interaction of these bound factors with the
transcriptional apparatus, RNA polymerase in particular
#49,50$. For eukaryotes the physical picture is less clear, so
we proceed phenomenologically. If binding of the transcrip-
tion factor activates the expression of gene i, we write

ḡi!c" =
cni

cni + Ki
ni

, !16"

and similarly if the transcription factor represses expression
we write

ḡi!c" =
Ki

ni

cni + Ki
ni

. !17"

These are smooth monotonic functions that interpolate be-
tween roughly linear response !n=1 and large K" and steep,
switchlike behavior !n→&" at some threshold concentration
!c=K". Such “Hill functions” often are used to describe the
cooperative binding of n molecules to their target sites #51$,
with F=−kBT ln K the free energy of binding per molecule,
and this is a useful intuition even if it is not correct in detail.

To complete our formulation of the problem we need to
understand the noise or fluctuations in expression level at
fixed inputs as summarized by variances #i

2. There are sev-
eral contributions to the variance, which we can divide into
two broad categories, as in Fig. 1.

The transcription of mRNA and its translation into protein
can be thought of as the “output” side of the regulatory ap-
paratus. Ultimately these processes are composed of indi-
vidual molecular events, and so there should be shot noise
from the inherent randomness of these events. This suggests
that there will be an output noise variance proportional to the
mean, #i,out

2 ' ḡi.
The arrival of transcription factor molecules can be

thought of as the “input” side of the apparatus and again
there should be noise associated with the randomness in this
arrival. This noise is equivalent to a fluctuation in the input
concentration itself; the variance in concentration should
again be proportional to the mean and the impact of this
noise needs to be propagated through the input/output rela-
tion so that #i,in

2 'c!dḡi /dc"2.
Putting together the input and output noise, we have

#i
2!c" = aḡi!c" + bc5dḡi!c"

dc
62

, !18"

where a and b are constants. Comparing this intuitive esti-
mate to more detailed calculations #21,29$ allows us to inter-
pret these constants. If ḡi is normalized so that its maximum
value is 1, then a=1 /Nmax, where Nmax is the maximum
number of independent molecules that are made from gene i.
If, for example, each mRNA molecule generates many pro-
teins during its lifetime, then !if the synthesis of mRNA is
limited by a single kinetic step" Nmax is the maximum num-
ber of mRNAs, as discussed in Refs. #20,22,29$.

The shot noise in the arrival of transcription factors at
their targets ultimately arises from diffusion of these mol-
ecules. Analysis of the coupling between diffusion and the
events that occur at the binding site #21,26,28$ shows that the
total input noise has both a term 'c!dḡi /dc"2 and additional
terms that can be made small by adjusting the parameters
describing kinetics of steps that occur after the molecules
arrive at their target; here we assume that nature chooses
parameters which make these nonfundamental noise sources
negligible #52$. In the remaining term, we have
b71 / !D!(", where D is the diffusion constant of the tran-
scription factor, ! is the size of its target on the DNA, and (
is the time over which signals are integrated in establishing
the steady state.

With the !semi"microscopic interpretation of the param-
eters, we can write

#i
2!c" =

1
Nmax

*ḡi!c" + cc05dḡi!c"
dc

62+ , !19"

where there is a natural scale of concentration,

c0 =
Nmax

D!(
. !20"

To get a rough feeling for this scale, we note that diffusion
constants for proteins in the cytoplasm are 7)m2 /s
#16,53–55$, target sizes are measured in nanometers, and in-
tegration times are minutes or hundreds of seconds !although
there are few direct measurements". The maximum number
of independent molecules depends on the character of the
target genes. In many cases of interest, these are also tran-

P(c) P(g)P(g|c)

In
pu

t

O
ut

pu
t

diffusion
noise

counting
statistics

max

FIG. 1. Input proteins at concentration c act as transcription
factors for the expression of output proteins, g. The diffusive noise
in transcription factor concentration and the shot noise at the output
both contribute to stochastic gene expression. The regulation pro-
cess is described using a conditional probability distribution of the
output knowing the input, P!g (c", which can be modeled as a
Gaussian process with a variance #g

2!c". In this paper we consider
the case of multiple output genes &gi', i=1, . . . ,M, each of which is
independently regulated by the process illustrated here with the cor-
responding noise #i

2.

TKAČIK, WALCZAK, AND BIALEK PHYSICAL REVIEW E 80, 031920 !2009"

031920-4



scription factors, in which case a number of experiments
suggest that Nmax710–100 #12,22,29$. Putting these
numbers together, we have c0710–100 / !)m"3 or
715–150 nM, although this !obviously" is just an order of
magnitude estimate.

To summarize, two rather general forms of noise limit the
information transmission in genetic regulatory networks.
Both combine additively and ultimately trace their origin to a
finite !and possibly small" number of signaling molecules.
The input noise is caused by a small concentration of tran-
scription factor molecules and its effect on the regulated
gene is additionally modulated by the input–output relation.
The output noise is caused by the small number of gene
products and this noise is simply proportional to the mean. It
is reasonable to believe that the strengths of these two noise
sources, in appropriate units, will be of comparable magni-
tude. Since the organism has to pay a metabolic price to
reduce either noise source, it would be wasting resources if it
were to lower the strength of one source alone far below the
limiting effect of the other.

C. Constraining means or maxima

To proceed, we need to decide how the problem of maxi-
mizing information transmission will be constrained. One
possibility is that we fix the maximum number of molecules
at the input and the output. The constraint on the output can
be implemented by measuring the expression levels in units
such that the largest values of the mean expression levels ḡi
are all equal to 1 #56$. On the input side, we restrict the range
of c to be c! #0,cmax$. With this normalization and limits on
the c integrals, we can maximize I!&gi' ;c" directly by vary-
ing the distribution of inputs, adding only a Lagrange multi-
plier to fix the normalization of PTF!c",

%

%PTF!c"*I!&gi';c" − *) dcPTF!c"+ = 0. !21"

As discussed in Ref. #42$, the solution to the variational
problem defined in Eq. !21" is

PTF
! !c" =

1

Z1
32"e

1
#c

!22"

=
1
Z1
* 1

2"e.
i=1

M
1

#i
2!c"

5dḡi!c"
dc

62+1/2

, !23"

where the normalization constant Z1 is given by

Z1 = )
0

cmax

dc* 1
2"e.

i=1

M
1

#i
2!c"

5dḡi!c"
dc

62+1/2

. !24"

The information transmission with this optimal choice of
PTF!c" takes a simple form,

I1
! = log2 Z1. !25"

The expression for Z1, and hence the optimal information
transmission, has a simple geometric interpretation. As the
concentration of the input transcription factor varies, the out-

put moves, on average, along a trajectory in the
M-dimensional space of expression levels; this trajectory is
defined by &ḡi!c"'. Nearby points along this trajectory cannot
really be distinguished because of noise; the information
transmission should be related to the number of distinguish-
able points. If the noise level was the same everywhere, this
count of distinguishable states would be just the length of the
trajectory in units where the standard deviation of the output
fluctuations, projected along the trajectory, is 1. Since the
noise is not uniform, we should introduce the local noise
level into our metric for measuring distances in the space of
expression levels and this is exactly what we see in Eq. !24".
Thus, we can think of the optimal information transmission
as being determined by the length of the path in expression
space that the network traces as the input concentration var-
ies, where length is measured with a metric determined by
the noise level.

This information capacity still depends upon the input/
output relations and the noise levels, so we have a second
layer of optimization that we can perform. Before doing this,
however, we consider another formulation of the constraints.

As an alternative to fixing the maximum concentration of
input transcription factor molecules, we consider fixing the
mean concentration. To do this, we introduce, as usual, a
second Lagrange multiplier +, so that our optimization prob-
lem becomes

%

%PTF!c"*I!&gi';c" − *) dcPTF!c" − +) dcPTF!c"c+ = 0.

!26"

Notice that we can also think of this as maximizing informa-
tion transmission in the presence of some fixed cost per input
molecule.

Solving Eq. !26" for the distribution of inputs, PTF!c", we
find

PTF
! !c" =

1
Z2
* 1

2"e.
i=1

M
1

#i
2!c"

5dḡi!c"
dc

62+1/2

e−+c, !27"

where

Z2 = )
0

&

dc* 1
2"e.

i=1

M
1

#i
2!c"

5dḡi!c"
dc

62+1/2

e−+c. !28"

As usual in such problems we need to adjust the Lagrange
multipliers to match the constraints, which is equivalent to
solving

−
! ln Z2

!+
= 0c1 . !29"

The optimal information transmission in this case is

I2
! = log2 Z2 + +0c1 . !30"

One might think that, for symmetry’s sake, we should
consider a formulation in which the mean number of output
molecules also is constrained. There is some subtlety to this,
since if we know the input/output functions, &ḡi!c"', and the
distribution of inputs, PTF!c", then the mean output levels are
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determined. Thus, it is not obvious that we have the freedom
to adjust the mean output levels. We return to this point in
Sec. III C.

III. ONE INPUT, ONE OUTPUT

To get a feeling for the structure of our optimization prob-
lem, we consider the case where the transcription factor
regulates the expression level of just one gene. If we con-
strain the maximum concentrations at the input and output,
then the information capacity is set by I=log2 Z1 #Eq. !25"$;
substituting our explicit expression for the noise #Eq. !19"$
we have

Z1 = )
0

cmax

dc*Nmax

2"e

!dḡ!c"/dc"2

ḡ!c" + c0c#dḡ!c"/dc$2+1/2

. !31"

The first point to note is that if the natural scale of concen-
tration, c0, is either very large or very small, then the opti-
mization problem loses all of its structure. Specifically, in
these two limits we have

Z1!c0 → &" = *D!(

2"e
+1/2)

0

cmax dc
3c

, !32"

=*2D!(cmax

"e
+1/2

, !33"

and

Z1!c0 → 0" = *Nmax

2"e
+1/2)

0

cmax dc
3ḡ!c"

4dḡ!c"
dc

4 , !34"

=*2Nmax

"e
+1/2

(3ḡ!cmax" − 3ḡ!0"( . !35"

In both cases, the magnitude of the information capacity be-
comes independent of the shape of the input/output relation
ḡ!c". Thus, the possibility that real input/output relations are
determined by the optimization of information transmission
depends on the scale c0 being comparable to the range of
concentrations actually used in real cells. Although we have
only a rough estimate of c0715–150 nM, Table I shows
that this is the case.

A. Numerical results with cmax

To proceed, we choose c0 as the unit of concentration, so
that

Z1 = *Nmax

2"e
+1/2

Z̃1, !36"

Z̃1!K/c0,n;C" = )
0

C

dx* !dḡ!x"/dx"2

ḡ!x" + x#dḡ!x"/dx$2+1/2

, !37"

where C=cmax /c0 and

ḡ!x" =
xn

!K/c0"n + xn !38"

in the case of an activator. It now is straightforward to
explore, numerically, the function Z̃1. An example, with
cmax /c0=1, is shown in Fig. 2.

We see that, with cmax=c0, there is a well defined but
broad optimum of the information transmission as a function

TABLE I. Concentration scales for transcription factors. We col-
lect absolute concentration measurements on transcription factors
from several different systems, sometimes indicating the maximum
observed concentration and in other cases the concentration that
achieves half-maximal activation or repression !midpoint". Bcd is
the bicoid protein, a transcription factor involved in early embry-
onic pattern formation; GAGA is a transcription factor in Droso-
phila, crp is a transcription factor that acts on a wide range of
metabolic genes in bacteria; lac is the well studied operon that
encodes proteins needed for lactose metabolism in E. coli; lac is the
transcription factor that represses expression of the lac operon;
OR1–3 are binding sites for the lac repressor.

Concentration Scale System Ref.

55,10 nM Midpoint * repressor in E. coli #10$
55,3 nM Maximum Bcd in Drosophila embryo #17$
5.3,0.7 nM Midpoint GAGA #57$
75 nM Midpoint crp to lac site #50$
70.2 nM Midpoint lac to OR1 #50,58$
73 nM Midpoint lac to OR2 #50,58$
7110 nM Midpoint lac to OR3 #50,58$
22,3 nM Midpoint lac to OR1 in vitro #59$
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FIG. 2. !Color online" Information capacity for one !activator"
input and one output. The information is I=log2 Z̃1+A, with A in-
dependent of the parameters; the map shows Z̃1 as computed from
Eq. !37", here with C%cmax /c0=1. We see that there is a broad
optimum with cooperativity nopt=1.86 and Kopt=0.48c0=0.48cmax.
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of the parameters K and n describing the input/output rela-
tion. Maximum information transmission occurs at modest
levels of cooperativity !n22" and with the midpoint of the
input/output relation near the midpoint of the available dy-
namic range of input concentrations !K2cmax /2".

Optimal solutions for activators and repressors have
qualitatively similar behaviors, with the optimal parameters
Kopt and nopt both increasing as cmax increases #Fig. 3!a"$.
Interestingly, at the same value of cmax, the optimal repres-
sors make fuller use of the dynamic range of outputs. The
information capacity itself, however, is almost identical for
activators and repressors across a wide range of cmax #Fig.
3!c"$. This is important, because it shows that our optimiza-
tion problem, even in this simplest form, can have multiple
nearly degenerate solutions. We also see that increases in
cmax far beyond c0 produce a rapidly saturating information
capacity, as expected from Eq. !35". Therefore, although in-
creasing the dynamic range always results in an increase in
capacity, the advantage in terms of information capacity
gained by the cell being able to use input concentration re-
gimes much larger than c0 is quite small.

B. Some analytic results

Although the numerical results are straightforward, we
would like to have some intuition about these optimal solu-

tions from analytic approximations. Our basic problem is to
do the integral defining Z̃1 in Eq. !37". We know that this
integral becomes simple in the limit that C is either large or
small, so let us start by trying to generate an approximation
that will be valid at large C.

At large C, the concentration of input molecules can be-
come large, so we expect that the “output noise,” #2' ḡ, will
be dominant. This suggests that we write

Z̃1 % )
0

C

dx- #dḡ!x"/dx$2

ḡ!x" + x#dḡ!x"/dx$2/1/2

2 )
0

C

dx4 dḡ!x"
dx

4 1
3ḡ!x"

*1 −
1
2

x
1

ḡ!x"5dḡ!x"
dx

62

+ ¯+ .

!39"

To proceed, we note the combination dx(dḡ /dx(, which in-
vites us to convert this into an integral over ḡ. We use the
fact that, for activators described by the Hill function in Eq.
!38",

x =
K

c0
5 ḡ

1 − ḡ
61/n

, !40"
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FIG. 3. !Color online" The optimal solutions for one gene controlled by one transcription factor. The optimization of information
transmission in the small noise limit depends on only one parameter, which we take here as the maximum concentration of the input
molecules, measured in units determined by the noise itself #c0 from Eq. !20"$. Panel !a" shows the optimal input/output relations with
cmax /c0=0.3,1 ,3 ,10,30,100,300; activators shown in blue !solid line", repressors in green !dashed line". Although the input/output relation
is defined for all c, we show here only the part of the dynamic range that is accessed when 0-c-cmax. Panel !b" shows the optimal
distributions, PTF

! !c", for each of these solutions. Panel !c" plots log2 Z̃1 for these optimal solutions as a function of cmax /c0. Up to an additive
constant, this is the optimal information capacity, in bits.
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dḡ!x"
dx

=
n

x
ḡ!1 − ḡ" . !41"

Substituting, we find

Z̃1 2 )
0

ḡ!C" dḡ
3ḡ
*1 −

c0n2

2K
ḡ1−1/n!1 − ḡ"2+1/n + ¯+ !42"

=23ḡ!C" −
c0n2

2K
)

0

ḡ!C"
dḡḡ1/2−1/n!1 − ḡ"2+1/n + ¯ . !43"

Again, we are interested in large C, so we can approximate
ḡ!C"21− !K /cmax"n. Similarly, the second term in Eq. !43"
can be approximated by letting the upper limit on the integral
approach 1; the difference between ḡ!C" and 1 generates
higher order terms in powers of 1 /C. Thus, we have

Z̃1
act 2 2 − 5 K

cmax
6n

− A!n"
c0n2

2K
+ ¯ , !44"

A!n" = )
0

1

dzz1/2−1/n!1 − z"2+1/n !45"

=
.!3/2 −1 /n".!3 + 1/n"

.!9/2"
. !46"

The approximate expression for Z̃1 expresses the basic com-
promise involved in optimizing information transmission. On
the one hand, we would like K to be small so that the output
runs through its full dynamic range; correspondingly, we
want to decrease the term !K /cmax"n. On the other hand, we
want to move the most sensitive part of the input/output
relation to higher concentrations, so that we are less sensitive
to the input noise; this corresponds to decreasing the term
'c0 /K. The optimal compromise is reached at

Kopt
act 2 cmax*nA!n"c0

2cmax
+1/!n+1"

. !47"

Parallel arguments yield, for repressors,

Z̃1
rep 2 2 −2 5 K

cmax
6n

− B!n"
c0n2

2K
+ ¯ , !48"

Kopt
rep 2 cmax*nB!n"c0

2cmax
+2/!n+2"

, !49"

B!n" = )
0

1

dzz1/2+1/n!1 − z"2−1/n !50"

=
.!3/2 + 1/n".!3 −1 /n"

.!9/2"
. !51"

The first thing we notice about our approximate results is
that the optimal values of K are almost proportional to cmax,
as one might expect, but not quite—the growth of K with
cmax is slightly sublinear. Also, one might have expected that
K would be chosen to divide the available dynamic range

into roughly equal “on” and “off” regions, which should
maximize the entropy of the output and hence increase the
capacity; to achieve this requires Kopt /cmax21 /2. In fact we
see that the ratio Kopt /cmax is determined by a combination of
terms and depends in an essential way on the scale of the
input noise c0, even though we assume that the maximal
concentration is large compared with this scale.

The basic compromise between extending the dynamic
range of the outputs and avoiding low input concentrations
works differently for activators and repressors. As a result,
the optimal values of K are different in the two cases. From
Eq. !37", it is clear that the symmetry between the two types
of regulation is broken by the noise term proportional to ḡ.
Unless the optimal Hill coefficient for repressors were very
much smaller than for activators !and it is not", Eqs. !47" and
!49" predict that Kopt

rep will be smaller than Kopt
act , in agreement

with the numerical results in Fig. 3.
To test these analytic approximations, we can compare the

predicted values of Kopt with those found numerically. There
is a slight subtlety, since our analytic results for Kopt depend
on the Hill coefficient n. We can take this coefficient as
known from the numerical optimization or we can use the
approximations to Z̃1 #as in Eq. !44"$ to simultaneously op-
timize for K and n. In contrast to the optimization of K,
however, there is no simple formula for nopt, even in our
approximation at large cmax.

Results for the approximate vs numerically exact optimal
K are shown in Fig. 4. As it should, the approximation ap-
proaches the exact answer as cmax becomes large. In fact, the
approximation is quite good even at cmax /c0710, and for
activators the error in Kopt is only 715% at cmax /c073.
Across the full range of cmax /c0/1, the analytic approxima-
tion captures the basic trends: Kopt /cmax is a slowly decreas-
ing function of cmax /c0, Kopt

act is larger than Kopt
rep by roughly a

factor of 2, and for both activators and repressors we have
Kopt noticeably smaller than cmax /2. Similarly good results
are obtained for the approximate predictions of the optimal
Hill coefficient n as shown in Fig. 4!b".

As noted above, the large cmax approximation makes clear
that optimizing information transmission is a compromise
between using the full dynamic range of outputs and avoid-
ing expression levels associated with large noise at low con-
centration of the input. The constraint of using the full dy-
namic range pushes the optimal K downward; this constraint
is stronger for repressors #compare the second terms of Eqs.
!44" and !48"$ causing the optimal Ks of repressors to be
smaller than those of the activators. On the other hand,
avoiding input noise pushes the most sensitive part of the
expression profile toward high concentrations favoring large
K. The fact that this approximation captures the basic struc-
ture of the numerical solution to the optimization problem
encourages us to think that this intuitive compromise is the
essence of the problem. It is also worth noting that as cmax
increases, activators increase their output range, hence gain-
ing capacity. On the other hand, the output of the repressed
systems is small for large cmax and the output noise thus is
large, limiting the increase in capacity compared to the acti-
vated genes, as is seen in Fig. 3!c".

In the case of small cmax it is harder to obtain detailed
expressions for K; however, we can still gain insight from
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the expression for the capacity in this limit. To obtain the
large cmax limit we assumed that ḡ0x!dḡ /dx"2 in the de-
nominator of the integrand which defines Z1; to obtain the
small cmax limit we make the opposite assumption:

Z̃1 2 )
0

C

dx- #dḡ!x"/dx$2

ḡ!x" + x#dḡ!x"/dx$2/1/2

= )
0

C

dx
1
3x
* 1

1 + ḡ!x"/&x#dḡ!x"/dx$2'+1/2

2 )
0

C

dx
1
3x
*1 −

x

2n2

1
g!1 − g"2 + ¯+ , !52"

where in the last step we use the relation in Eq. !41". We see
that, if g approaches one, the first correction term will di-

verge. This allows us to predict the essential feature of the
optimal solutions at small cmax, namely, that they do not ac-
cess the full dynamic range of outputs.

C. Constraining means

Here we would like to solve the same optimization prob-
lem by constraining the mean concentrations rather than im-
posing a hard constraint on the maximal concentrations; as
noted above we can also think of this problem as maximizing
information subject to a fixed cost per molecule. To compare
results in a meaningful way, we should know how the mean
concentration varies as a function of cmax when we solve the
problem with constrained maxima and this is shown in Fig.
5!a". An interesting feature of these results is that mean con-
centrations are much less than half of the maximal concen-
tration. Also, the mean input concentrations for activator and
repressor systems are similar despite different values of the
optimal K. This result shows that for a given dynamic range
defined by cmax, there is an optimal mean input concentra-
tion, which is independent of whether the input/output rela-
tion is up or down regulating.

Equation !28" shows us how to compute the partition
function Z2 for the case where we constrain the mean con-
centration of transcription factors and Eq. !30" relates this to
the information capacity I2. Substituting our explicit expres-
sions for the noise in the case of one input and one output,
we have

Z2 = *Nmax

2"e
+1/2

Z̃2, !53"

Z̃2 = )
0

&

dc- #dḡ!c"/dc$2

ḡ!c" + cc0#dḡ!c"/dc$2/1/2

e−+c. !54"

As before, we choose Hill functions for ḡ!c" and maxi-
mize I2 with respect to the parameters K and n. This defines
a family of optimal solutions parametrized by the Lagrange
multiplier + and we can tune this parameter to match the
mean concentration 0c1. Using the calibration in Fig. 5!a", we
can compare these results with those obtained by optimizing
with a fixed maximum concentration. Results are shown in
Figs. 5!b"–5!d".

The most important conclusion from Fig. 5 is that con-
straining mean concentrations and constraining maximal
concentrations give—for this simple problem of one input
and one output—essentially the same answer. The values of
the optimal Ks are almost identical #Fig. 5!c"$, as are the
actual number of bits that can be transmitted #Fig. 5!b"$. The
only systematic difference is in the Hill coefficient n, where
having a fixed maximal concentration drives the optimization
toward slightly larger values of n #Fig. 5!d"$ so that more of
the dynamic range of outputs is accessed before the system
runs up against the hard limit at c=cmax.

It is interesting that the optimal value of K is more nearly
a linear function of 0c1 than of cmax, as we see in Fig. 5!c". To
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FIG. 4. Approximate results for the optimal values of K !a" and
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use our analytic approximations to determine, for example, the op-
timal K assuming n is known !large cmax with known n results" or
we can simultaneously optimize both parameters !large cmax re-
sults"; results are shown for both calculations.
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understand this, we follow the steps in Sec. III B, expanding
the expression for 0c1 in the same approximation that we
used for large cmax:

0c1 =

)
0

C

dcc- #dḡ!c"/dc$2

ḡ!c" + cc0#dḡ!c"/dc$2/1/2

)
0

C

dc- #dḡ!c"/dc$2

ḡ!c" + cc0#dḡ!c"/dc$2/1/2

2
)

ḡ!0"

ḡ!C"
dḡ

c
3ḡ

−
1
2)ḡ!0"

ḡ!C"
dḡn2ḡ1/2!1 − ḡ"2

)
ḡ!0"

ḡ!C"
dḡ

1
3ḡ

−
1
2)ḡ!0"

ḡ!C"
dḡn2cḡ1/2!1 − ḡ"2

. !55"

In the case of an activator, c=K /c0#ḡ / !1− ḡ"$1/n, and the
leading terms become

0c1 =

)
ḡ!0"

ḡ!C"
dḡḡ1/n−1/2!1 − ḡ"−1/n

)
ḡ!0"

ḡ!C"
dḡḡ−1/2

$8K +
n2

2

)
ḡ!0"

ḡ!C"
dḡḡ1/2−1/n!1 − ḡ"2+1/n

)
ḡ!0"

ḡ!C"
ḡ−1/2

+ ¯9
−

n2

2

)
ḡ!0"

ḡ!C"
dḡḡ1/2!1 − ḡ"2

)
ḡ!0"

ḡ!C"
dḡḡ−1/2

. !56"

To get some intuition for the numerical values of these terms
we will assume the integral covers the whole expression
range ḡ! #0,1$, and n=3. Then this expression simplifies to
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FIG. 5. !a" Mean concentration of the transcription factor when we optimize information transmission subject to a constraint on the
maximum concentration. Results are shown for one input and one output, both for activators and repressors. The dashed black line shows
equality. !b"–!d" Comparing two formulations of the optimization problem for activators !black lines" and repressors !gray lines" calculated
with a finite dynamic range !cmax—circles and solid lines" and constrained means !crosses and dashed lines". The panels show the relative
information in panel !b", the optimal value of K in panel !c", and the optimal value of the Hill coefficient in panel !d". In panel !c",
approximate results for K are shown as a function of 0c1 from Eqs. !56" and !58".
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0c1 2 0.86K + 0.52, !57"

so we understand how this simple result emerges, at least
asymptotically at large cmax.

In the case of repressors the leading terms are

0c1 =

)
ḡ!0"

ḡ!C"
dḡḡ−1/n−1/2!1 − ḡ"1/n

)
ḡ!0"

ḡ!C"
dḡḡ−1/2

$8K +
n2

2

)
ḡ!0"

ḡ!C"
dḡḡ1/2+1/n!1 − ḡ"2−1/n

)
ḡ!0"

ḡ!C"
ḡ−1/2

+ ¯9
−

n2

2

)
ḡ!0"

ḡ!C"
dḡḡ1/2!1 − ḡ"2

)
ḡ!0"

ḡ!C"
dḡḡ−1/2

. !58"

As in the case of the activator, making the rough approxima-
tion that n=3 and ḡ! #0,1$ allows us to get some intuition
for this large cmax result:

0c1 2 2.8K + 1.19. !59"

These extremely crude estimates do predict the basic linear
trends in Fig. 5!c", including the fact that for a given value of
the mean concentration, the repressor has a smaller K than
the activator.

Before leaving this section, we should return to the ques-
tion of constraining mean outputs, as well as mean inputs.
We have measured the input concentration in absolute units
!or relative to the physical scale c0", so when we constrain
the mean input we really are asking that the system use only
a fixed mean number of molecules. In contrast, we have mea-
sured outputs in relative units, so that the maximum of ḡ!c"
is 1. If we want to constrain the mean number of output
molecules, we need to fix not 0g1, but rather Nmax0g1, since
the factor of Nmax brings us back to counting the molecules
in absolute terms #60$. Thus, exploring constrained mean
output requires us to view Nmax !and hence the scale c0" as an
extra adjustable parameter.

By itself, adding Nmax as an additional optimization pa-
rameter makes our simple problem more complicated, but
does not seem to add much insight. In principle it would
allow us to discuss the relative information gain on adding
extra input vs output molecules, with the idea that we might
find optimal information transmission subject to some net
resource constraint; for initial results in this direction see
Ref. #41$. In networks with feedback, the target genes also
act as transcription factors and these tradeoffs should be
more interesting. We will return to this problem in subse-
quent papers.

IV. MULTIPLE OUTPUTS

When the single transcription factor at the input of our
model system has multiple independent target genes, and we
constrain the maximal concentrations, the general form of
the information capacity in the small noise limit is given by
Eq. !24",

Z1 = )
0

cmax

dc- 1
2"e.

i=1

M
1

#i
2!c"*dḡi!c"

dc
+2/1/2

= *Nmax

2"e
+1/2)

0

cmax

dc-.
i=1

M #dḡi!c"/dc$2

ḡi!c" + cc0#dḡi!c"/dc$2/1/2

,

!60"

where we assume for simplicity that the basic parameters
Nmax and D!( are the same for all the target genes. Once
again, c0=Nmax /D!( provides a natural unit of concentration.
We limit ourselves to an extended discussion of the case with
a hard upper bound, cmax, to the dynamic range of the input.
As in the case of a single output, the calculation with a
constrained mean input concentration gives essentially the
same results.

To get an initial feeling for the structure of the problem,
we try the case of five target genes, all of which are activated
by the transcription factor. Then,

ḡi!c" =
cni

cni + Ki
ni

, !61"

and we can search numerically for the optimal settings of all
the parameters &Ki ,ni'. Results are shown in Fig. 6. A strik-
ing feature of the problem is that, for small values of the
maximal concentration C=cmax /c0, the optimal solution is
actually to have all five target genes be completely redun-
dant, with identical values of Ki and ni. As cmax increases,
this redundancy is lifted and the optimal solution becomes a
sequence of target genes with staggered activation curves, in
effect “tiling” the input domain 0-c-cmax. To interpret
these results, we realize that for small maximal concentration
the input noise dominates and the optimal strategy for M
genes is to “replicate” one well-placed gene M times: having
M independent and redundant readouts !with identical K and
n" of the input concentration will decrease the noise by a
factor of 3M. However, as the dynamic range increases and
output noise has a chance to compete with the input noise,
more information can be transmitted by using M genes to
probe the input at different concentrations, thereby creating a
cascade of genes that get activated at successively higher and
higher input levels. The transition between these two readout
strategies is described in more detail below.

To look more closely at the structure of the problem, we
drop down to consider two target genes. Then there are three
possibilities—two activators !AA", two repressors !RR", and
one of each !AR". For each of these discrete choices, we
have to optimize two exponents !n1 ,n2" and two half-
maximal points !K1 ,K2". In Fig. 7 we show how Z̃1 varies in
the !K1 ,K2" plane assuming that at every point we choose the
optimum exponents; the different quadrants correspond to
the different discrete choices of activator and repressor. The
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results show clearly how the redundant !K1=K2" solutions at
low values of cmax bifurcate into asymmetric !K1"K2" solu-
tions at larger values of cmax; the critical value of cmax is
different for activators and repressors. This bifurcation struc-
ture is summarized in Fig. 8, where we also see that, for each
value of cmax, the three different kinds of solutions !AA, RR,
and AR" achieve information capacities that differ by less
than 0.1 bits.

The information capacity is an integral of the square root
of a sum of terms, one for each target gene #Eq. !60"$. Thus,
if we add redundant copies of a single gene, all with the
same values of K and n, the integral Z1 will scale as 3M,
where M is the number of genes. In particular, as we go from
one to two target genes, Z would increase by a factor 32 and
hence the information capacity, log2 Z, would increase by
one half bit; more generally, with M redundant copies, we
have !1 /2"log2 M bits of extra information relative to having
just one gene. On the other hand, if we could arrange for two
target genes to make nonoverlapping contributions to the in-
tegral, then two genes could have a value of Z that is twice as
large as for one gene, generating an extra bit rather than an
extra half bit. In fact a full factor of 2 increase in Z is not
achievable because once the two target genes are sampling
different regions of concentration they are making different

tradeoffs between the input and output noise terms; since the
one gene had optimized this tradeoff, bifurcating into two
distinguishable targets necessarily reduces the contribution
from each target. Indeed, if the maximal concentration is too
low then there is no “space” along the c axis to fit two
distinct activation !or repression" curves, and this is why low
values of cmax favor the redundant solutions.

Figure 9!a" shows explicitly that when we increase the
number of target genes at low values of cmax, the optimal
solution is to use the genes redundantly and hence the gain in
information is !1 /2"log2 M. At larger values of cmax, going
from one target to two targets one can gain more than half a
bit, but this gain is bounded by 1 bit, and indeed over the
range of cmax that we explore here the full bit is never quite
reached.

We can take a different slice through the parameter space
of the problem by holding the number of target genes fixed
and varying cmax. With a single target gene, we have seen
!Fig. 3" that the information capacity saturates rapidly as
cmax is increased above c0. We might expect that, with mul-
tiple target genes, it is possible to make better use of the
increased dynamic range and this is what we see in Fig. 9!b".

For a system with many target genes, it is illustrative to
plot the optimal distribution of input levels, PTF

! !c"'#c
−1!c".

Figure 10 shows the results for the case of M =2,3 , . . . ,9
genes at low !C=0.3" and high !C=30" input dynamic range.
At low input dynamic range the distributions for various M
collapse onto each other !because the genes are redundant",
while at high C increasing the number of genes drives the
optimal distribution closer to 'c−1/2. We recall that the input
noise is #c'3c, so this shows that, as the number of targets
becomes large, the input noise becomes dominant over a
wider and wider dynamic range.

Finally, one can ask how finely tuned the input/output
relations for the particular genes need to be in a maximally
informative system. To consider how the capacity of the sys-
tem changes when the parameters of the input/output rela-
tions change slightly, we analyzed the !Hessian" matrix of
second derivatives of the information with respect to frac-
tional changes in the various parameters; we also made more
explicit maps of the variations in information with respect to
the individual parameters and sampled the variations in in-
formation that result from random variations in the param-
eters within some range. Results for a two gene system are
illustrated in Fig. 11.

The first point concerns the scale of the variations—20%
changes in parameters away from the optimum result in only
70.01 bits of information loss, and this is true both at low
cmax where the solutions are redundant and at high cmax
where they are not. Interestingly, the eigenmodes of the Hes-
sian reveal that in the asymmetric case the capacity is most
sensitive to variations in the larger K. The second most sen-
sitive !much weaker than the first" direction is a linear com-
bination of both of the parameters K and n for the gene
which is activated at lower concentrations. Perhaps surpris-
ingly, this means that genes which activate at higher K need
to have their input/output relations positioned with greater
accuracy along the c axis, even in fractional terms. If we
think of K7e−F/kBT, where F is the binding !free" energy of
the transcription factor to its specific target site along the
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genome, another way of stating this result is that weaker
binding energies !smaller F" must be specified with greater
precision to achieve a criterion level of performance. Finally,
if we allow parameters to vary at random, we see #Figs. 11!c"
and 11!d"$ that the effects on information capacity are ex-
tremely small as long as these variations are bounded, so that
the range of the natural log of the parameters is significantly
less than 1. If we allow larger fluctuations, there is a transi-
tion to a much broader distribution of information capacities,
with a substantial loss relative to the optimum.

V. DISCUSSION

The ability of cells to control the expression levels of their
genes is central to growth, development, and survival. In this
work we have explored perhaps the simplest model for this
control process, in which changes in the concentration of a
single transcription factor protein modulate the expression of
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one or more genes by binding to specific sites along the
DNA. Such models have many parameters, notably the bind-
ing energies of the transcription factor to the different target
sites and the interactions or cooperativity among factors
bound to nearby sites that contribute to the control of the
same gene. This rapid descent from relatively simple physi-
cal pictures into highly parametrized models is common to

most modern attempts at quantitative analysis of biological
systems. Our goal in this work is to understand whether these
many parameters can be determined by appeal to theoretical
principles rather than solely by fitting to data.

We begin our discussion with a caveat. Evidently, deriv-
ing the many parameters that describe a complex biological
system is an ambitious goal and what we present here is at
best a first step. By confining ourselves to systems in which
one transcription factor modulates the expression of many
genes, with no further inputs or interactions, we almost cer-
tainly exclude the possibility of direct, quantitative compari-
sons with real genetic control networks. Understanding this
simpler problem, however, is a prerequisite to analysis of
more complex systems, and, as we argue here, sufficient to
test the plausibility of our theoretical approach.

The theoretical principle to which we appeal is the opti-
mization of information transmission. In the context of ge-
netic control systems, we can think of information transmis-
sion as a measure of control power—if the system can
transmit I bits of information, then adjustment of the inputs
allows the cell to access, reliably, 2I distinguishable states of
gene expression. In unicellular organisms, for example, these
different states could be used to match cellular metabolism to
the available nutrients, while in the developing embryo of a
multicellular organism these different states could be the
triggers for emergence of different cell types or spatial struc-
tures; in either case, it is clear that information transmission
quantifies our intuition about the control power or !colloqui-
ally" complexity that the system can achieve. Although one
could imagine different measures, specialized to different
situations, we know from Shannon that the mutual informa-
tion is the unique measure that satisfies certain plausible con-
ditions and works in all situations #30,31$.

Information transmission is limited by noise. In the con-
text of genetic control systems, noise is significant because
the number of molecules involved in the control process is
small and basic physical principles dictate the random be-
havior of the individual molecules. In this sense, the maxi-
mization of information transmission really is the principle
that organisms should extract maximum control power from
a limited number of molecules. Analysis of experiments on
real control elements suggests that the actual number of mol-
ecules used by these systems sets a limit of 1–3 bits on the
capacity of a transcription factor to control the expression
level of one gene, that significant increases in this capacity
would require enormous increases in the number of mol-
ecules, and that, at least in one case, the system can achieve
790% of its capacity #41,42$. Although these observations
are limited in scope, they suggest that cells may need to
operate close to the informational limits set by the number of
molecules that they can afford to devote to these genetic
control processes.

The strategy needed to optimize information transmis-
sion depends on the structure of the noise in the system. In
the case of transcriptional control, there are two irreducible
noise sources, the random arrival of transcription factors
at their target sites and the shot noise in the synthesis and
degradation of the output molecules !mRNA or protein".
The interplay between these noise sources sets a characteris-
tic scale for the concentration of transcription factors,
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c0715–150 nM. If the maximum available concentration is
too much larger or smaller than this scale, then the optimi-
zation of information transmission becomes degenerate and
we lose predictive power. Further, c0 sets the scale for dimin-
ishing returns, such that increases in concentration far be-
yond this scale contribute progressively smaller amounts of
added information capacity. Thus, with any reasonable cost
for producing the transcription factor proteins, the optimal
tradeoff between bits and cost will set the mean or maximal
concentration of transcription factors in the range of c0. Al-
though only a very rough prediction, it follows without de-
tailed calculation, and it is correct !Table I".

The optimization of information transmission is largely a
competition between the desire to use the full dynamic range
of outputs and the preference for outputs that can be gener-
ated reproducibly, that is, at low noise. Because of the com-

bination of noise sources, this competition has nontrivial
consequences, even for a single transcription factor control-
ling one gene. As we consider the control of multiple genes,
the structure of the solutions becomes richer. Activators and
repressors are both possible and can achieve nearly identical
information capacities. With multiple target genes, all the
combinations of activators and repressors also are possible
#61$. This suggests that, generically, there will be exponen-
tially many networks that are local optima, with nearly iden-
tical capacities, making it possible for a theory based on
optimization to generate diversity.

For a limited range of input transcription factor concen-
trations, the solutions which optimize information transmis-
sion involve multiple redundant target genes. Absent this re-
sult, the observation of redundant targets in real systems
would be interpreted as an obvious sign of nonoptimality, a
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remnant of evolutionary history, or perhaps insurance against
some rare catastrophic failure of one component. As the
available range of transcription factor concentrations be-
comes larger, optimal solutions diversify, with the responses
of the multiple target genes tiling the dynamic range of in-
puts. In these tiling solutions, targets that require higher con-
centrations to be activated or repressed also are predicted to
exhibit greater cooperativity; in such an optimized system
one thus should find some genes controlled by a small num-
ber of strong binding sites for the transcription factor and
other genes with a large number of weaker sites.

To a large extent, the basic structure of the !numerically"
optimal solutions can be recovered analytically through vari-
ous approximation schemes. These analytic approximations
make clear that the optimization really is driven by a conflict
between using the full dynamic range of outputs and avoid-
ing states with high intrinsic noise. In particular, this means
that simple intuitions based on maximizing the entropy of
output states, which are correct when the noise is unstruc-
tured #34$, fail. Thus, almost all solutions have the property
that at least one target gene is not driven through the full
dynamic range of its outputs, and even with one gene the
midpoint of the optimal activation curve can be far from the
midpoint of the available range of inputs. The interplay be-
tween different noise sources also breaks the symmetry be-
tween activators and repressors, so that repressors optimize
their information transmission by using only a small fraction
of the available input range.

The predictive power of our approach depends on the ex-
istence of well defined optima. At the same time, it would be
difficult to imagine evolution tuning the parameters of these
models with extreme precision, so the optima should not be
too sharply defined. Indeed, we find that optima are clear but
broad. In the case of multiple genes, random 725% varia-
tions in parameters around their optima result in only tiny
fractions of a bit of information loss, but once fluctuations
become larger than this the information drops precipitously.
Looking more closely, we find that proper placement of the
activation curves at the upper end of the input range is more
critical implying that it is actually the weaker binding sites
whose energies need to be adjusted more carefully !perhaps
contrary to intuition".

With modest numbers of genes, the optimization approach
we propose here has the promise of making rather detailed
predictions about structure of the input/output relations, gen-
erating what we might think of as a spectrum of Ks and ns.
In the limit of larger networks, we might expect this spec-
trum to have some universal properties and we see hints of
this in Fig. 10. Here, as we add more and more target genes,
the optimal distribution of inputs approaches an asymptote
PTF!c"'1 /3c; more of this limiting behavior is accessible if
the available dynamic range of inputs is larger. This is the
form we expect if the effective noise is dominated by the
input noise, #c'3c. Thus, adding more targets and placing
them optimally allows the system to suppress output noise
and approach ever more closely the fundamental limits set by
the physics of diffusion.

Although there are not so many direct physical measure-
ments specifying the input/output relations of genetic regu-
latory elements, there are many systems in which there is

evidence for tiling of the concentration axis by a set of target
genes, all regulated by the same transcription factor, along
the lines predicted here #62$. For example, in quorum sens-
ing by bacteria, the concentrations of extracellular signaling
molecules are translated internally into different concentra-
tions of LuxR, which acts as a transcription factor on a num-
ber of genes, and these can be classified as being responsive
to low, intermediate, and high levels of LuxR #63$. Similarly,
the decision of Bacillus subtilis to sporulate is controlled by
the phosphorylated form of the transcription factor Spo0A,
which regulates the expression of 730 genes as well as an
additional 24 multigene operons #64$. For many of these tar-
gets the effects of SpoA7P are direct and the sensitivity to
high vs low concentrations can be correlated with the bind-
ing energies of the transcription factor to the particular pro-
moters #65$. In yeast, the transcription factor Pho4 is a key
regulator of phosphate metabolism and activates targets such
as pho5 and pho84 at different concentrations #66$. All of
these are potential test cases for the theoretical approach we
have outlined here !each with its own complications", but a
substantially new level of quantitative experimental work
would be required to test the theory meaningfully.

The classic example of multiple thresholds in the activa-
tion of genes by a single transcription factor is in embryonic
development #3,4$. In this context, spatial gradients in the
concentration of transcription factors and other signaling
molecules mean that otherwise identical cells in the same
embryo experience different inputs. If multiple genes are ac-
tivated by the same transcription factor but at different
thresholds, then smooth spatial gradients can be transformed
into sharper “expression domains” that provide the scaffold-
ing for more complex spatial patterns. Although controver-
sies remain about the detailed structure of the regulatory net-
work, the control of the “gap genes” in the Drosophila
embryo by the transcription factor Bicoid seems to provide a
clear example of these ideas #4,67–71$. Recent experimental
work #16,17$ suggests that it will be possible to make abso-
lute measurements of !at least" Bicoid concentrations, and to
map the input/output relations and noise in this system, hold-
ing out the hope for more quantitative comparison with
theory.

Finally, we look ahead to the more general problem in
which multiple target genes are allowed to interact. Absent
these interactions, even our optimal solutions have a strong
degree of redundancy—as the different targets turn on at
successively higher concentrations of the input, there is a
positive correlation and hence redundancy among the signals
that they convey. This redundancy could be removed by mu-
tually repressive interactions among the target genes, in-
creasing the efficiency of information transmission in much
the same way that lateral inhibition or center-surround orga-
nization enhances the efficiency of neural coding in the vi-
sual system #33,35$. It is known that such mutually repres-
sive interactions exist, for example, among the gap genes in
the Drosophila embryo #72$. The theoretical challenge is to
see if these observed structures can be derived, quantita-
tively, from the optimization of information transmission.
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