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Changes in a cell’s external or internal conditions are usually reflected in the concentrations of the relevant
transcription factors. These proteins in turn modulate the expression levels of the genes under their control and
sometimes need to perform nontrivial computations that integrate several inputs and affect multiple genes. At
the same time, the activities of the regulated genes would fluctuate even if the inputs were held fixed, as a
consequence of the intrinsic noise in the system, and such noise must fundamentally limit the reliability of any
genetic computation. Here we use information theory to formalize the notion of information transmission in
simple genetic regulatory elements in the presence of physically realistic noise sources. The dependence of this
“channel capacity” on noise parameters, cooperativity and cost of making signaling molecules is explored
systematically. We find that, in the range of parameters probed by recent in vivo measurements, capacities
higher than one bit should be achievable. It is of course generally accepted that gene regulatory elements must,
in order to function properly, have a capacity of at least one bit. The central point of our analysis is the
demonstration that simple physical models of noisy gene transcription, with realistic parameters, can indeed
achieve this capacity: it was not self-evident that this should be so. We also demonstrate that capacities
significantly greater than one bit are possible, so that transcriptional regulation need not be limited to simple
“on-off” components. The question whether real systems actually exploit this richer possibility is beyond the
scope of this investigation.

DOI: 10.1103/PhysRevE.78.011910 PACS number!s": 87.16.Yc, 87.16.Xa, 89.70.!a

I. INTRODUCTION

Networks of interacting genes coordinate complex cellu-
lar processes, such as responding to stress, adapting the me-
tabolism to a varying diet, maintaining the circadian cycle, or
producing an intricate spatial arrangement of differentiated
cells during development #1–4$. The success of such regula-
tory modules is at least partially characterized by their ability
to produce reliable responses to repeated stimuli or changes
in the environment over a wide dynamic range, and to per-
form the genetic computations reproducibly, on either a day-
by-day or generation time scale. In doing so the regulatory
elements are confronted by noise arising from physical pro-
cesses that implement such genetic computations, and this
noise ultimately traces its origins back to the fact that the
state variables of the system are concentrations of chemicals,
and “computations” are really reactions between individual
molecules, usually present at low copy numbers #5,6$.

It is useful to picture the regulatory module as a device
that, given some input, computes an output, which in our
case will be a set of expression levels of regulated genes.
Sometimes the inputs to the module are easily identified,
such as when they are the actual chemicals that a system
detects and responds to, for example chemoattractant mol-
ecules, hormones, or transcription factors !TFs". There are
cases, however, when it is beneficial to think about the inputs
on a more abstract level: in embryonic development we talk
of “positional information” and think of the regulatory mod-
ule as trying to produce a different gene expression footprint
at each spatial location #7$; alternatively, circadian clocks
generate distinguishable gene expression profiles corre-
sponding to various phases of the day #1$. Regardless of

whether we view the input as a physical concentration of
some transcription factor or perhaps a position within the
embryo, and whether the computation is complicated or as
simple as an inversion produced by a repressor, we want to
quantify its reliability in the presence of noise, and ask what
the biological system can do to maximize this reliability.

If we make many observations of a genetic regulatory
element in its natural conditions we are collecting samples
drawn from a distribution p!I ,O", where I describes the
state of the input and O the state of the output. Saying that
the system is able to produce a reliable response O across the
spectrum of naturally occurring input conditions, p!I",
amounts to saying that the dependency—either linear or
strongly nonlinear—between the input and output is high,
i.e., far from random. Shannon has shown how to associate a
unique measure, the mutual information I, with the notion of
dependency between two quantities drawn from a joint dis-
tribution #8–10$:

I!I;O" =% % dI dO p!I,O"log2

p!I,O"
p!I"p!O"

. !1"

The resulting quantity is a measure in bits and is essen-
tially the logarithm of the number of states in the input that
produce distinguishable outputs given the noise. A device
that has one bit of capacity can be thought of as an “on-off”
switch, two bits correspond to four distinguishable regula-
tory settings, and so on. Although the input is usually a con-
tinuous quantity, such as nutrient concentration or phase of
the day, the noise present in the regulatory element corrupts
the computation and does not allow the arbitrary resolution
of a real-valued input to propagate to the output; instead, the
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mutual information tells us how precisely different inputs are
distinguishable to the organism.

Experimental or theoretical characterization of the joint
distribution p!I ,O" for a regulatory module can be very dif-
ficult if the inputs and outputs exist in a high-dimensional
space. We can proceed, nevertheless, by remembering that
the building blocks of complex modules are much simpler,
and finally must reduce to the point where a single gene is
controlled by transcription factors that bind to its promoter
region and tune the level of its expression. While taking a
simple element out of its network will not be illuminating
about how the network as a whole behaves in general—
especially if there are feedback loops—there may be cases
where the information flow is “bottlenecked” through a
single gene, and its reliability will therefore limit that of the
network. In addition, the analysis of a simple regulatory el-
ement will provide directions for taking on more compli-
cated systems; see Ref. #11$ for a recent related analysis.

Before proceeding, we wish to briefly review the current
state of understanding of gene regulation through the lens of
information theory. In particular, we would like to give sev-
eral examples of theoretical models that have been used to
successfully make connection with experimental measure-
ments in various regulatory systems, and stress that the in-
formation capacities of such proposed mechanisms can be
very different. Asked to name a particular “typical” number
for the capacity of a simple genetic regulatory element, one
is thus in difficulty, as we hope to illustrate below.

It would seem that requiring that the transcriptional appa-
ratus provide at least two distinguishable levels of expression
in a regulated gene !and thus one bit of capacity" is a safe bet
for a lower bound on capacity, and this would be consistent
with the notion of a gene as a switchable element. However,
even this “obvious” view can be challenged: recent work, for
example, has shown that adaptive behavior for a population
of organisms could emerge even in the case of stochastic
switching, where the output of the regulatory process is a
!biased" random “guess” about the input #12,13$. This can
provide information beneficial to the organism, even if the
information capacity in the technical sense is significantly
less than one bit.

A large body of work considers deterministic switchlike
behavior, reflecting the bias toward the study of genetic sys-
tems that are essential to the proper functioning of the organ-
ism and for which the requirement of reproducibility of re-
sponses argues for accurate, or even deterministic, control.
Boolean networks, for example, provided interesting insights
into the dynamics of the cell cycle #14$, but, interestingly,
they had to be extended to higher-than-binary logical func-
tions !with some genes requiring three or four distinct levels
of expression" in a model constructed to explain how the
four gap genes respond to primary maternal morphogens in
the fruit fly Drosophila wild type and several mutant pheno-
types #15$.

Assuming the noise is small enough, one can progress
beyond two !or several" discrete states toward true continu-
ous control !which has, formally at least, infinite information
capacity". This level of description is typical of models
grounded in mass-action kinetics, such as models of the cell
cycle in fission yeast or of circadian clocks #16,17$. How-

ever, the behavior of the organism is ultimately often ex-
plained by the !qualitative" features of the phase portrait,
such as the bifurcation points, stable states and limit cycles,
without invoking the benefits of capacity available through
continuous precision. In these models that do not include
noise ab initio, it is important to check whether the qualita-
tive behavior of the phase portrait is robust with respect to
the addition of small amounts of noise; if so, then the model
is robust, the continuous description was only a mathemati-
cal convenience, and the true capacity will be finite; if the
model is qualitatively sensitive to small noise, however, the
biological relevance of the model is questionable.

In this paper we prepare the framework in which the ques-
tions of information capacity and its heuristic interpretation
as the number of distinguishable states of gene expression
can be precisely formulated. Given what is known about
noise in transcriptional regulation, we first want to check a
simple, but important idea, namely that at least binary con-
trol is achievable; we then proceed to the computation of
higher capacities with biologically realistic noise models.
While answering the broader question about the diversity of
genetic regulatory mechanisms is not our aim here—and the
field also lacks such a correspondingly broad experimental
survey of gene expression noise—we believe that our results
nevertheless offer a nontrivial insight into the capacities and
limitations of simple genetic regulatory elements.

II. MAXIMIZING INFORMATION TRANSMISSION

Our aim is to understand the reliability of a simple genetic
regulatory element, that is, of a single activator or repressor
transcription factor controlling the expression level of its
downstream gene. We will identify the concentration c of the
transcription factor as the only input, I&'c(, and the expres-
sion level of the downstream gene g as the only relevant
output, O&'g(. The regulatory element itself will be param-
etrized by the input-output kernel p!g )c", i.e., the distribution
#as opposed to a “deterministic” function g=g!c" in the case
of a noiseless system$ of possible outputs given that the input
is fixed to some particular level c. For each such kernel, we
will then compute the maximum amount of information
I!c ;g" that can be transmitted through it, and examine how
this capacity depends on the properties of the kernel.

For the sake of discussion let us split the transcriptional
regulatory processes into the “system” under study, i.e., the
direct control of expression level g by the concentration of
transcription factor, c, and all the remaining regulatory pro-
cesses, grouped collectively into an internal cellular “envi-
ronment,” which could possibly include the downstream
readout of g and the control over the production of c. The
input-output kernel of a simple regulatory element, p!g )c", is
determined by the properties of our system, namely, by the
biophysics of transcription factor–DNA interaction, and tran-
scription and translation for gene g. In contrast, the distribu-
tion of input transcription factor concentrations, pTF!c", that
the cell uses during its typical lifetime, is not a property of
the c→g regulatory process directly, but of other processes
constituting the internal environment; considered as an input
into regulation of g, the cell’s transcription factor expression
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footprint pTF!c" can be viewed as its representation of the
external world and internal state to which the cell responds
by modulating its expression level of g. Together, the input-
output kernel and the distribution of inputs define the joint
distribution p!c ,g"= p!g )c"pTF!c", and consequently the mu-
tual information of Eq. !1" between the input and the output,
I!c ;g".

Maximizing the information between the inputs and out-
puts, which corresponds to our notions of reliability in rep-
resentation and computation, will therefore imply a specific
matching between the given input-output kernel and the dis-
tribution of inputs, pTF!c". Because we consider our system,
the genetic regulatory element p!g )c", as given, we are going
to ask about the context in which this element can be opti-
mally used, i.e., we are going to find the optimal pTF!c".
Parenthetically, we note that p!g )c" and pTF!c" are both in-
ternal to the cell and are thus potentially targets of either
adaptation or evolutionary processes; as we argue below, the
choice to treat p!g )c" as given and optimize pTF!c" is a con-
venience that allows easier connection with the current state
of experiments rather than a necessity. Then, if one believes
that a specific regulatory element has been tuned for maxi-
mal information transmission, the optimal solution for the
inputs, pTF

! !c", and the resulting optimal distribution of out-
put expression levels, pexp

! !g"=*dc p!g )c"pTF
! !c", become ex-

perimentally verifiable predictions. If, on the other hand, the
system is not really maximizing information transmission,
then the capacity achievable with a given kernel and its op-
timal input distribution, I#p!g )c" , pTF

! !c"$, can still be re-
garded as a !hopefully revealing" upper bound on the true
information transmission of the system.

One could also consider maximizing the information by
holding the distribution of inputs fixed and adjusting the
input-output kernel, and this is indeed the setup in which
information transmission arguments have been applied be-
fore to explain adaptation in neural systems that encode vi-
sual stimuli #18–21$. In that context the organism does not
control the ensemble of images that it perceives over its life-
time, but can tune the properties of its input-output kernel to
the image statistics. If the matching between the input-output
kernel and the input distribution is mutual, however, either
measuring the input-output kernel and optimizing the input
distribution, or, alternatively, measuring the input distribu-
tion and optimizing the kernel, should yield the information
capacity of the system. In the case of gene regulation, we
have good experimental access to the input-output relation
p!g )c", but not to the “natural” distribution of input concen-
trations, pTF!c" !with the exception of Refs. #22,23$"; we
therefore choose to infer p!g )c" from experimental measure-
ments directly and find a corresponding optimal pTF

! !c".
During the past decades the measurements of regulatory

elements have focused on recovering the mean response of a
gene under the control of a transcription factor that had its
activity modulated by experimentally adjustable levels of in-
ducer or inhibitor molecules #24$. Typically, a sigmoidal re-
sponse is observed with a single regulator, as in Fig. 1, and
more complicated regulatory “surfaces” are possible when
there are two or more simultaneous inputs to the system
#25,26$. In our notation, these experiments measure the con-
ditional average over the distribution of outputs, ḡ!c"

=*dg gp!g )c". Developments in flow cytometry and single-
cell microscopy enabled the experimenters to start tracking
in time and across the population of cells the expression
levels of fluorescent reporter genes and thus open a window
into the behavior of fluctuations. Consequently, work explor-
ing the noise in gene expression, or "g

2!c"=*dg!g
− ḡ"2p!g )c", has begun to accumulate, on both the experi-
mental and biophysical modeling sides #27–30$. The efforts
to further characterize and understand this noise were re-
newed by theoretical work by Swain and co-workers #31$
that has shown how to separate intrinsic and extrinsic com-
ponents of the noise, i.e., the noise due to the stochasticity of
the observed regulatory process in a single cell, and the noise
contribution that arises because typical experiments make
many single-cell measurements and the internal chemical en-
vironments of these cells differ across the population.

A. Small-noise approximation

We start by showing how the optimal distributions can be
computed analytically if the input-output kernel is Gaussian
and the noise is small, and proceed by presenting the exact
numerical solution later. Let us assume then that the first and
second moments of the conditional distribution are given,
and write the input-output kernel as a set of Gaussian distri-
butions G(g ; ḡ!c" ,"g!c"), or explicitly,

p!g)c" =
1

+2#"g
2!c"

exp,−
#g − ḡ!c"$2

2"g
2!c" - , !2"

where both the mean response ḡ!c" and the noise "g!c" de-
pend on the input, as illustrated in Fig. 1.
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FIG. 1. !Color online" A schematic diagram of a simple regula-
tory element. Each input is mapped to a mean output according to
the input-output relation !thick sigmoidal black line". Because the
system is noisy, the output fluctuates about the mean. This noise is
plotted in gray as a function of the input and shown in addition as
error bars on the mean input-output relation. Inset shows the prob-
ability distribution of outputs at half saturation, p!g )c=Kd" !red
dotted lines"; in this simple example we assume that the distribution
is Gaussian and therefore fully characterized by its mean and
variance.
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We rewrite the mutual information between the input and
the output of Eq. !1" in the following way:

I!c;g" =% dc pTF!c"% dg p!g)c"log2 p!g)c"

−% dc pTF!c"% dg p!g)c"log2 pexp!g" . !3"

The first term can be evaluated exactly for Gaussian distri-
butions, p!g )c"=G(g ; ḡ!c" ,"g!c"). The integral over g is just
the calculation of the !negative of the" entropy of the Gauss-
ian, and the first term therefore evaluates to
−.S#G!g ; ḡ ,"g"$/pTF!c"=− 1

2 .log22#e"g
2!c"/pTF!c".

In the second term of Eq. !3", the integral over g can be
viewed as calculating .log2 pexp!g"/ under the distribution
p!g )c". For an arbitrary continuous function f!g" we can ex-
pand the integrals with the Gaussian measure around the
mean:

.f!g"/G!g;ḡ,"g" =% dg G!g"f!ḡ" +% dg G!g"0 ! f

!g
0

ḡ
!g − ḡ"

+
1
2% dg G!g"0 ! f2

!g20
ḡ
!g − ḡ"2 + ¯ . !4"

The first term of the expansion simply evaluates to f!ḡ". The
series expansion would end at the first term if we were to
take the small-noise limit, lim"g→0 G!g ; ḡ ,"g"=$!g− ḡ". The
second term of the expansion is zero because of symmetry,
and the third term evaluates to 1

2"g
2f!!ḡ". We apply the ex-

pansion of Eq. !4" and compute the second term in the ex-
pression for the mutual information, Eq. !3", with f!g"
=log2 pexp!g". Taking only the zeroth order of the expansion,
we get

I!c;g" = −% dc pTF!c"#log2
+2#e"g!c" + log2pexp!ḡ"$ .

!5"

We can rewrite the probability distributions in terms of ḡ,
using pTF!c"dc= p̂exp!ḡ"dḡ !the caret denotes the distribution
of mean expression levels", and assume that, in the small-
noise approximation, pexp!ḡ"= p̂exp!ḡ". To maximize the in-
formation transmission we form the following Lagrangian
and introduce the multiplier % that keeps the resulting distri-
bution normalized:

L#p̂exp!ḡ"$ = −% dḡ p̂exp!ḡ"log2#+2#e"g!ḡ"p̂exp!ḡ"$

− %% dḡ p̂exp!ḡ" . !6"

The optimal solution is obtained by taking a variational de-
rivative with respect to p̂exp!ḡ", $L#p̂exp!ḡ"$

$p̂exp!ḡ" =0. The solution is

p̂exp
! !ḡ" =

1
Z

1

"g!ḡ"
. !7"

By inserting the optimal solution, Eq. !7", into the expression
for mutual information, Eq. !3", we get an explicit result for
the capacity:

Iopt!c;g" = log2, Z
+2#e

- , !8"

where Z is the normalization of the optimal solution in Eq.
!7":

Z = %
0

1 dḡ

"g!ḡ"
. !9"

The optimization with respect to the distribution of inputs,
pTF!c", has led us to the result for the optimal distribution of
mean outputs, Eq. !7". We had to assume that the input-
output kernel is Gaussian and that the noise is small, and we
refer to this result as the small-noise approximation !SNA"
for channel capacity. Note that in this approximation only the
knowledge of the noise in the output as a function of mean
output, "g!ḡ", matters for capacity computation, and the di-
rect dependence on the input c is irrelevant. This is important
because the behavior of intrinsic noise as a function of the
mean output is an experimentally accessible quantity #28$.
Note also that for big enough noise the normalization con-
stant Z will be small compared to +2#e, and the small-noise
capacity approximation of Eq. !8" will break down by pre-
dicting negative information values.

B. Large-noise approximation

Simple regulatory elements usually have a monotonic,
saturating input-output relation, as shown in Fig. 1, and !at
least" a shot noise component whose variance scales with the
mean. If the noise strength is increased, the information
transmission must drop and, even with the optimally tuned
input distribution, eventually yield only a bit or less of ca-
pacity. Intuitively, the best such a noisy system can do is to
utilize only the lowest and highest achievable input concen-
trations, and ignore the continuous range in between. Thus,
the mean responses will be as different as possible, and the
noise at low expression will also be low because it scales
with the mean. More formally, if only 'cmin,cmax( are used as
inputs, then the result is either p!g )cmin" or p!g )cmax"; the
optimization of channel capacity reduces to finding
pTF!cmin", with pTF!cmax"=1− pTF!cmin". This problem can be
solved by realizing that each of the two possible input con-
centrations produces its respective Gaussian output distribu-
tions, and by maximizing information by varying pTF!cmin".
Simplifying even further, we can threshold the outputs and
allow g to take on only two values instead of a continuous
range; then each of the two possible inputs “min” and “max”
maps into two possible outputs, on and off, and confusion in
the channel arises because the min input might be misunder-
stood as on output, and vice versa, with probabilities given
by the output distribution overlaps, as shown schematically
in Fig. 2.
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In the latter case we can use the analytic formula for the
capacity of the binary asymmetric channel. If & is the prob-
ability of detecting an off output if max input was sent, and
' is the probability of receiving an off output if min input
was sent, and H!·" is a binary entropy function,

H!p" = − p log2p − !1 − p"log2!1 − p" , !10"

then the capacity of this asymmetric channel is #32$

I!c;g" =
− &H!'" + 'H!&"

& − '
+ log2!1 + 2#H!'"−H!&"$/!&−'"" .

!11"

Because this approximation reduces the continuous distribu-
tion of outputs to only two choices, on or off, it can under-
estimate the true channel capacity and is therefore a lower
bound.

C. Exact solution

The information between the input and output in Eq. !3"
can be maximized numerically for any input-output kernel
p!g )c" if the variables c and g are discretized, making the
solution space that needs to be searched, pTF!ci", finite. One
possibility is to use a gradient descent-based method and
make sure that the solution procedure always stays within the
domain boundaries 1ipTF!ci"=1, pTF!cj"(0 for every j. Al-
ternatively, a procedure known as the Blahut-Arimoto algo-
rithm has been derived specifically for the purpose of finding
optimal channel capacities #33$. Both methods yield consis-
tent solutions, but we prefer to use the second one because of

faster convergence and convenient inclusion of constraints
on the cost of coding !see Appendix A for details".

One should be careful in interpreting the results of such
naive optimization and worry about the artifacts introduced
by discretization of input and output domains. After discreti-
zation, the formal optimal solution is no longer required to
be smooth and could, in fact, be composed of a collection of
Dirac $ function spikes. On the other hand, the real, physical
concentration c cannot be tuned with arbitrary precision in
the cell; it is a result of noisy gene expression, and even if
this noise source were removed, the local concentration at
the binding site would still be subject to fluctuations caused
by randomness in diffusive flux #34,35$. The Blahut-Arimoto
algorithm is completely agnostic as to which !physical" con-
centrations belong to which bins after concentration has been
discretized, and so it could assign wildly different probabili-
ties to concentration bins that differ in concentration by less
than "c !i.e., the scale of local concentration fluctuations",
making such a naive solution physically unrealizable. In Ap-
pendix A we describe how to properly use the Blahut-
Arimoto algorithm despite the difficulties induced by dis-
cretization.

III. A MODEL OF SIGNALS AND NOISE

If enough data were available, one could directly sample
p!g )c" and proceed by calculating the optimal solutions as
described previously. Here we start, in contrast, by assuming
the Gaussian model of Eq. !2", in which the mean, ḡ!c", and
the output variance, "g

2!c", are functions of the transcription
factor concentration c. Our goal for this section is to build an
effective microscopic model of transcriptional regulation and
gene expression, and therefore define both functions with a
small number of biologically interpretable parameters. In the
subsequent discussion we plan to vary those and thus sys-
tematically observe the changes in information capacity.

In the simplest picture, the interaction of the TF with the
promoter site consists of binding with a !second-order" rate
constant k+ and unbinding at a rate k−. In a somewhat more
complicated case where h TF molecules cooperatively acti-
vate the promoter, the analysis still remains simple as long as
the favorable interaction energy between the TFs is sufficient
to make only the fully occupied !and thus activated" and the
empty !and thus inactivated" states of the promoter likely;
this effective two-state system is once more describable with
a single rate for switching off the promoter, k−, and the cor-
responding activation rate has to be proportional to ch !see
Ref. #35$, in particular Appendix B". Generally, therefore, the
equilibrium occupancy of the site will be

n =
ch

ch + Kd
h , !12"

where the Hill coefficient h captures the effects of coopera-
tive binding, and Kd is the equilibrium constant of binding.
The mean expression level g is then
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FIG. 2. !Color online" An illustration of the large-noise approxi-
mation. We consider distributions of the output at minimal !cmin"
and full !cmax" induction as trying to convey a single binary deci-
sion, and construct the corresponding encoding table !inset" by dis-
cretizing the output using the threshold ). The capacity of such an
asymmetric binary channel is degraded from the theoretical maxi-
mum of 1 bit, because the distributions overlap !blue and red". For
unclipped Gaussians the optimal threshold ) is at the intersection
of two alternative probability distributions, but in general one
searches for the optimal ) that maximizes information in Eq. !11".
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g!c" = g0ḡ = g02n , activator,

1 − n , repressor,
3 !13"

where ḡ has been normalized to vary between 0 and 1, and g0
is the maximum expression level. In what follows we will
assume the activator case, where ḡ=n, and present the result
for the repressor at the end.

The fluctuations in occupancy have a !binomial" variance
"n

2=n!1−n" and a correlation time *c=1 / !k+ch+k−" #35$. If
the expression level of the target gene is effectively deter-
mined by the average of the promoter site occupancy over
some window of time *int, then the contribution to variance
in the expression level due to the on-off promoter switching
will be

,"g

g0
-2

= "n
2 *c

*int
=

n!1 − n"
!k+ch + k−"*int

=
n!1 − n"2

k−*int
, !14"

where in the last step we use the fact that k+ch!1−n"=k−n.
At low TF concentrations the arrival times of single tran-

scription factor molecules to the binding site are random
events. Recent measurements #22$ as well as simulations
#36$ seem to be consistent with the hypothesis that this vari-
ability in diffusive flux contributes an additional noise term
#34,35,37,46$, similar to the Berg-Purcell limit to chemoat-
tractant detection in chemotaxis. The noise in expression
level due to fluctuations in the binding site occupancy, or the
total input noise, is therefore a sum of this diffusive compo-
nent #see Eq. !11" of Ref. #35$$ and the switching component
of Eq. !14":

,"g

g0
-

input

2

=
n!1 − n"2

k−*int
+

h2!1 − n"2n2

#Dac*int
, !15"

where D is the diffusion constant for the TF and a is the
receptor site size !a43 nm for a typical binding site on the
DNA"; see Ref. #38$ for the case where the transport of TF
molecules to the binding site involves one-dimensional !1D"
diffusion along the DNA contour in addition to the 3D dif-
fusion in the cytoplasm.

To compute the information capacity in the small-noise
limit using the simple model developed so far, we need the
constant Z from Eq. !9", which is defined as an integral over
expression levels. As both input noise terms are proportional
to !1− ḡ"2, the integral must take the form

Z + %
0

1 dḡ

!1 − ḡ"F!ḡ"
, !16"

where F!ḡ" is a function that approaches a constant as ḡ
→1. Strangely, we see that this integral diverges near full
induction !ḡ=1", which means that the information capacity
also diverges.

Naively, we expect that modulations in transcription fac-
tor concentration are not especially effective at transmitting
regulatory information once the relevant binding sites are
close to complete occupancy. More quantitatively, the sensi-
tivity of the site occupancy to changes in TF concentration,
!n /!c, vanishes as n→1, and hence small changes in TF
concentration will have vanishingly small effects. Our intu-
ition breaks down, however, because in thinking only about

the mean occupancy we forget that even very small changes
in occupancy could be effective if the noise level is suffi-
ciently small. As we approach complete saturation, the vari-
ance in occupancy decreases, and the correlation time of
fluctuations becomes shorter and shorter; together these ef-
fects cause the standard deviation as seen through an aver-
aging time *int to decrease faster than !n /!c, and this mis-
match is the origin of the divergence in information capacity.
Of course, the information capacity of a physical system can-
not really be infinite; there must be an extra source of noise
!or reduced sensitivity" that becomes limiting as n→1.

The noise in Eq. !15" captures only the input noise, i.e.,
the noise in the protein level caused by the fluctuations in the
occupancy of the binding site. In contrast, the output noise
arises even when the occupancy of the binding site is fixed
!for example, at full induction", and originates in the stochas-
ticity in transcription and translation. The simplest model
postulates that when the activator binding site is occupied
with fractional occupancy n, mRNA molecules are synthe-
sized in a Poisson process at a rate Re that generates Re*en
mRNA molecules on average during the lifetime of a single
mRNA molecule, *e. Every message is a template for the
production of proteins, which is another Poisson process
with rate Rg. If the integration time is larger than the lifetime
of single mRNA molecules, *int,*e, the mean number of
proteins produced is g=Rg*intRe*en=g0n, and the variance
associated with both Poisson processes is #35$

,"g

g0
-

output

2

=
1 + Rg*e

g0
n , !17"

where b=Rg*e is the burst size, or the number of proteins
synthesized per mRNA.

We can finally put the results together by adding the input
noise Eq. !15" and the output noise Eq. !17", and expressing
both in terms of the normalized expression level ḡ!c". We
consider both activators and repressors, following Eq. !13":

,"g

g0
-

act

2

= -ḡ + + .!1 − ḡ"2+1/hḡ2−1/h + /ḡ!1 − ḡ"2, !18"

,"g

g0
-

rep

2

= -ḡ + + .!1 − ḡ"2−1/hḡ2+1/h + /ḡ2!1 − ḡ" , !19"

with the relevant parameters '- ,. ,/ ,h( explained in Table I.
Note that both repressor and activator cases differ only in the
shape of the input noise contributions !especially for low
cooperativity h". Note further that the output noise increases
monotonically with mean expression ḡ, while the input noise
peaks at intermediate levels of expression.

In addition to the noise sources that we have discussed
here, there can be other sizable contributions to the total
noise in the output gene expression level, "g!c", such as the
global variations in protein concentrations and transmitted
noise from the fluctuations in the production of the regulat-
ing TF, among others; see, e.g., Ref. #39$ for the analysis of
noise propagation and transmitted noise, the work by Elowitz
and colleagues #28$ in the synthetic lac system where global
noise seems to be important, or the general discussion about
extrinsic noise in #31$. For any particular genetic regulatory
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element for which there is experimental data on noise and for
which one wants to compute the information capacity, the
noise model has to account for all those terms that contribute
significantly to the total noise in the output, "g!c", across the
whole range of input concentrations c. In this theoretical pa-
per we focus on the output !-" and diffusional input !."
noise contributions, in order to make the noise parameter
space easy to analyze and visualize. Furthermore, these two
noise sources are sufficient to explain the experimental data
of Refs. #22,40$, which we will use to illustrate our theoret-
ical results. It has been easy to extend the noise models and
capacity calculations to include global noise !which scales as
"g+ ḡ", or a nonzero amount of input switching noise !pa-
rametrized by /" for the systems in which these contributions
are significant, although these additions do not change the
capacity results in a qualitatively interesting way #41$.

IV. RESULTS

A. Capacity of simple regulatory elements

Having at our disposal both a simple model of signals and
noise and a numerical way of finding the optimal solutions
given an arbitrary input-output kernel, we are now ready to
examine the channel capacity as a function of the noise pa-
rameters from Table I. Our first result, shown in Fig. 3, con-
cerns the simplest case of an activator with no cooperativity,
h=1; for this case, the noise in Eq. !18" simplifies to

,"g

g0
-2

= -ḡ + .!1 − ḡ"3ḡ . !20"

Here we have assumed that there are two relevant sources of
noise, i.e., the output noise !which we parametrize by - and
plot on the horizontal axis" and the input diffusion noise
!parametrized by ., vertical axis". Each point of the noise
plane in Fig. 3!a" therefore represents a system characterized
by a Gaussian noise model, Eq. !2", with variance given by
Eq. !20" above.

As expected, the capacity increases most rapidly when the
origin of the noise plane is approached approximately along
its diagonal, whereas along each of the edges one of the two
noise sources effectively disappears, leaving the system

dominated by either output or input noise alone. We pick two
illustrative examples, the blue and the red systems of Figs.
3!b" and 3!c", that have realistic noise parameters. The blue
system has, apart for the decreased cooperativity !h=1 in-
stead of 5", the characteristics of the Bicoid-Hunchback
regulatory element in Drosophila melanogaster #23,35$; the
red system is dominated by output noise with characteristics
measured recently for about 40 yeast genes #40$. We would
like to emphasize that both the small-noise approximation
and the exact solution predict that these realistic systems are
capable of transmitting more than 1 bit of regulatory infor-
mation and that they, indeed, could transmit up to about 2
bits. In addition, we are also reminded that while the distri-
butions #for example, the optimal output distribution in Fig.
3!b"$ can look bimodal and this has often been taken as an
indication that there are two relevant states of the output,

TABLE I. Gaussian noise model parameters. Note that if burst
size b,1 then the output noise is determined by the average num-
ber of mRNA molecules, -4!.mRNA/"−1. Note also that if the on
rate is diffusion limited, i.e., k+=4#Da, then both input noise mag-
nitudes . and / are proportional to each other and decrease with
increasing k−, or alternatively, with increasing Kd=k− /k+. In steady
state the system averages the fluctuations on the time scale of *int,
so that all noise strengths -, ., and / are inversely proportional to
the integration time.

Parameter Value Description

- !1+b" /g0 Output noise strength
. h2 /#DaKd*int Diffusion input noise strength
/ !k−*int"−1 Switching input noise strength
h Cooperativity !Hill coefficient"
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FIG. 3. !Color online" Information capacity !color code, in bits"
as a function of input and output noise using the activator input-
output relation with Gaussian noise given by Eq. !20" and no coop-
erativity !h=1". !a" shows the exact capacity calculation !thick line"
and the small-noise approximation !dashed line". !b" displays the
details of the blue point in !a": the noise in the output is shown as a
function of the input, with a peak that is characteristic of a domi-
nant input noise contribution; also shown is the exact solution !thick
black line" and the small-noise approximation !dashed black line" to
the optimal distribution of output expression levels. !c" similarly
displays details of the system denoted by a red dot in !a"; here the
output noise is dominant and both approximate and exact solutions
for the optimal distribution of outputs show a trend monotonically
decreasing with the mean output.
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such distributions really can have capacities above 1 bit;
similarly, distributions without prominent features, such as
the monotonically decreasing optimal output distribution of
Fig. 3!c", should also not be expected necessarily to have
low capacities.

A closer look at the overall agreement between the small-
noise approximation #dashed lines in Fig. 3!a"$ and the exact
solution !thick lines" shows that the small-noise approxima-
tion underestimates the true capacity, consistent with our re-
mark that for large noise the approximation will incorrectly
produce negative results; at the 2-bit information contour the
approximation is about 415% off but improves as the capac-
ity is increased.

In the high-noise regime we are making yet another ap-
proximation, the validity of which we now need to examine.
In our discussion about the models of signals and noise we
assumed that we can talk about the fractional occupancy of
the binding site and continuous concentrations of mRNA,
transcription factors and protein, instead of counting these
species in discrete units, and that noise can effectively be
treated as Gaussian. Both of these assumptions are the cor-
nerstones of the Langevin approximation for calculating the
noise variance #42$. If the parameters - and . actually arise
due to the underlying microscopic mechanisms described in
Sec. III on signals and noise, we expect that at least for some
large-noise regions of the noise plane the discreteness in the
number of mRNA molecules will become important and the
Langevin approximation will fail. In such cases !a much
more time-consuming" exact calculation of the input-output
relations using the master equation is possible for some noise
models !see Appendix B"; we show that in the region where
log -0−2 the channel capacities calculated with Gaussian
kernels can be overestimated by 410% or more; there the
Langevin calculation gives the correct second moment, but
misses the true shape of the distribution. Although both ex-
amples with realistic noise parameters, Figs. 3!b" and 3!c",
lie safely in the region where the Langevin approximation is
valid, care should be used whenever both output noise - and
burst size are large, and - is consequently dominated by a
small number of transcripts.

Is there any difference between activators and repressors
in their capacity to convey information about the input? We
concluded Sec. III on the noise models with separate expres-
sions for activator noise, Eq. !18", and repressor noise, Eq.
!19"; focusing now on the repressor case, we recompute the
information in the same manner as we did for the activator in
Fig. 3!a", and display the difference between the capacities
of the repressor and activator with the same noise parameters
in Fig. 4. As expected, the biggest difference occurs above
the main diagonal, where the input noise dominates over the
output noise. In this region the capacity of the repressor can
be bigger by as much as third than that of the corresponding
activator. Note that, as h→1, the activator and repressor
noise expressions become indistinguishable and the differ-
ence in capacity vanishes for the noise models with output
and input diffusion noise contributions, Eqs. !18" and !19".

The behavior of the regulatory element is conveniently
visualized in Fig. 5 by plotting a cut through the noise plane
along its main diagonal. Moving along this cut scales the
total noise variance of the system up or down by a multipli-

cative factor, and allows us to observe the overall agreement
between the exact solution and small- and large-noise ap-
proximations. In addition we point out the following inter-
esting features of Fig. 5 that will be examined more closely
in subsequent sections.

First, the parameter region in the noncooperative case, in
which the capacity falls below 1 bit and the large-noise ap-
proximation is applicable, is small and shrinks further at
higher cooperativity. This suggests that a biological imple-
mentation of a reliable binary channel could be relatively
straightforward, assuming our noise models are appropriate.
Moreover, there exist distributions not specifically optimized
for the input-output kernel, such as the input distribution
uniform in ln!c /Kd" that we pick as an illustrative example in
Fig. 5 !thick black line"; we find that this simple choice can
achieve considerable information transmission, and are
therefore motivated to raise a more general question about
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FIG. 4. Difference in the information capacity between the re-
pressors and activators !color code in bits". !a" shows Irep!h=1"
− Iact!h=1", with the noise model that includes output !-" and input
diffusion noise !." contributions #see Fig. 3 for absolute values of
Iact!h=1"$. !b" shows Irep− Iact for the noise model that includes
output noise !-" and input switching noise !/" contributions; this
plot is independent of cooperativity h.
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FIG. 5. !Color online" Comparison of exact channel capacities
and various approximate solutions. For both panels #!a" no cooper-
ativity, h=1; !b" strong cooperativity, h=3$ we take a cross section
through the noise plane in Fig. 3 along the main diagonal, where the
values for noise strength parameters - and . are equal. The exact
optimal solution is shown in red. By moving along the diagonal of
the noise plane !and along the horizontal axis in the plots above"
one changes both input and output noise by the same multiplicative
factor s, and since, in the small-noise approximation, ISNA+ log2 Z,
Z=*"g!ḡ"−1dḡ, that factor results in an additive change in capacity
by log2 s. We can use the large-noise-approximation lower bound
on capacity for the case h=1, in the parameter region where capaci-
ties fall below 1 bit.
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the sensitivity of channel capacity with respect to perturba-
tions in the optimal solution pTF

! !c". We reconsider this idea
more systematically in the next section.

Second, it can be seen from Fig. 5 that at small noise the
cooperativity has a minor effect on the channel capacity. This
is perhaps unexpected, as the shape of the mean response
ḡ!c" strongly depends on h. We recall, however, that mutual
information I!c ;g" is invariant to any invertible reparametri-
zation of either g or c. In particular, changing the cooperat-
ivity or the value of the equilibrium binding constant Kd in
theory only results in an invertible change in the input vari-
able c, and therefore the change in the steepness or midpoint
of the mean response must not have any effect on I!c ;g".
This argument does break down in the high-noise regime,
where the cooperative system achieves capacities above 1 bit
while the noncooperative system fails to do so. Reparametri-
zation invariance would work only if the input concentration
could extend over the whole positive interval, from zero to
infinity. The substantial difference between capacities of co-
operative and non-cooperative systems in Fig. 5 at low ca-
pacity stems from the fact that in reality the cell !and our
computation" is limited to a finite range of concentrations c
! #cmin,cmax$, instead of the whole positive half axis c
! #0,1". We explore the issue of limited input dynamic
range further in the next section.

Finally, we draw attention to the simple linear scaling of
the channel capacity with the logarithm of the total noise
strength in the small-noise approximation, as explained in
the caption of Fig. 5. In general, increasing the number of
input and output molecules by a factor of 4 will decrease the
relative input and output noise by a factor of +4=2, and
therefore, in the small-noise approximation, increase the ca-
pacity by log22=1 bit. If one assumes that the cell can make
transcription factor and output protein molecules at no cost,
then scaling of the noise variance along the horizontal axis of
Fig. 5 is inversely proportional to the total number of signal-
ing molecules used by the regulatory element, and its capac-
ity can grow without bound as more and more signaling
molecules are used. If, however, there are metabolic or time
costs to making more molecules, our optimization needs to
be modified appropriately, and we present the relevant com-
putation in Sec. IV C on the costs of coding.

B. Cooperativity, dynamic range, and the tuning of solutions

In the analysis presented so far we have not paid any
particular attention to the question of whether the optimal
input distributions are biologically realizable or not. We will
proceed to relax some of the idealizations made until now
and analyze the corresponding changes in the information
capacity.

We start by considering the impact on channel capacity of
changing the allowed dynamic range to which the input con-
centration is restricted. Figure 6!a" displays the capacity as a
function of the dynamic range, output noise and cooperativ-
ity. The main feature of the plot is the difference between the
low- and high-cooperativity cases at each noise level; regard-
less of cooperativity the total information at infinite dynamic
range would saturate at approximately the same value !which

depends on the output noise magnitude". However, highly
cooperative systems manage to reach a high fraction !80% or
more" of their saturated information capacity even at reason-
able dynamic ranges of 25- to 100-fold !meaning that the
input concentration varies in the range # 1

5Kd ,5Kd$ or
# 1

10Kd ,10Kd$, respectively", whereas low-cooperativity sys-
tems require a much bigger dynamic range for the same ef-
fect. The decrease in capacity with decreasing dynamic range
is a direct consequence of the nonlinear relationship between
the concentration and occupancy, Eq. !12", and for low-
cooperativity systems means being unable to fully shut down
or fully induce the promoter. In theory, Eq. !18" predicts that
"g(ḡ!c"→0)=0, making the state in which the gene is off
very informative about the input. If, however, the gene can-
not be fully repressed either because there is always some
residual input, cmin, or because there is leaky expression even
when the input is exactly zero, then at any biologically rea-
sonable input dynamic range some capacity will be lost.

Next, we briefly discuss how precisely tuned the resulting
optimal distributions have to be to take full advantage of the
regulatory element’s capacity. For each point in the noise
plane of Fig. 3!a" the optimal input distribution pTF

! !c" is
perturbed many times to create an ensemble of suboptimal
inputs pTF

i !c" !see Appendix C". For each pTF
i !c", we com-

pute, first, its distance away from the optimal solution by
means of Jensen-Shannon divergence, di=DJS!pTF

i , pTF
! " #43$;

next, we use the pTF
i !c" to compute the suboptimal informa-

tion transmission Ii. The divergence di is a measure of simi-
larity between two distributions and ranges between 0 !dis-
tributions are the same" and 1 !distributions are very
different"; 1 /di!pTF

i , pTF
! " approximately corresponds to the

number of samples one would have to draw to say with con-
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FIG. 6. !Color online" Effects of imposing realistic constraints
on the space of allowed input distributions. !a" shows the change in
capacity if the dynamic range of the input around Kd is changed
!“25-fold range” means c! #Kd /5,5Kd$". The regulatory element is
a repressor with either no cooperativity !dashed line" or high coop-
erativity h=3 !thick line". We plot three high-low cooperativity
pairs for different choices of the output noise magnitude !high noise
in light gray, ln -5−2.5; medium noise in dark gray, ln -5−5;
low noise in black, ln -5−7.5". !b" shows the sensitivity of chan-
nel capacity to perturbations in the optimal input distribution. For
various systems from Fig. 3 we construct suboptimal input distri-
butions, as described in the text, compute the fraction of capacity
lost relative to the unperturbed optimal solution, and plot this frac-
tion against the optimal capacity of that system !black dots"; ex-
trapolated absolute capacity left when the input tends to be very
different from optimal, i.e., DJS→1, is plotted in red.
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fidence that they were selected from either pTF
i !c" or pTF

! !c".
A scatter plot of many such pairs !di , Ii" obtained with vari-
ous perturbations pTF

i !c" for each system of the noise plane
characterizes the sensitivity of the optimal solution for that
system; the main feature of such a plot, Fig. 9 below, is the
linear !negative" slope that describes the fraction of channel
capacity lost for a unit of Jensen-Shannon distance away
from the optimal solution. Figure 6!b" displays these frac-
tions as a function of the optimal capacity, and each system
from the noise plane shown in Fig. 3 is represented by a
black dot. We note that systems with higher capacities re-
quire more finely tuned solutions and suffer a larger frac-
tional !and thus absolute" loss if the optimal input distribu-
tion is perturbed. Importantly, if the linear slopes are taken
seriously and are used to extrapolate toward distributions
that are very different from optimal, DJS→1, we observe that
for most of the noise plane the leftover capacity still remains
about 1 bit, indicating that biological regulatory elements
capable of transmitting an on-off decision perhaps are not
difficult to construct. On the other hand, transmitting signifi-
cantly more than one bit requires some degree of tuning that
matches the distribution of inputs to the characteristics of the
regulatory element.

C. Costs of higher capacity

Real regulatory elements must balance the pressure to
convey information reliably with the cost of maintaining the
cell’s internal state, represented by the expression levels of
transcription factors. The fidelity of the representation is in-
creased !and the fractional fluctuation in their number is de-
creased" by having more molecules “encode” a given state.
On the other hand, making or degrading more transcription
factors puts a metabolic burden on the cell, and frequent
transitions between various regulatory states could involve
large time lags as, for example, the regulation machinery
attempts to keep up with a changed environmental condition,
by accumulating or degrading the corresponding TF mol-
ecules. In addition, the output genes themselves that get
switched on or off by transcription factors and therefore read
out the internal state must not be too noisy, otherwise the
advantage of maintaining precise transcription factor levels
is lost. For recent work on costs of regulation, see Refs.
#13,44,45$.

Suppose that there is a cost to the cell for each molecule
of output gene that it needs to produce, and that this incre-
mental cost per molecule is independent of the number of
molecules already present. Then, on the output side, the cost
must be proportional to .g/=*dg gpexp!g". We remember that
in optimal distribution calculations g is expressed as relative
to the maximal expression, such that its mean is between
zero and one. To get an absolute cost in terms of the number
of molecules, this normalized ḡ therefore needs to be multi-
plied by the inverse of the output noise strength, -−1, as the
latter scales with g0 !see Table I". The contribution of the
output cost is thus proportional to -−1ḡ.

On the input side, the situation is similar: the cost must be
proportional to Kd.c̃/=Kd*dc̃ c̃pTF!c̃", where our optimal so-
lutions are expressed, as usual, in dimensionless concentra-

tion units c̃=c /Kd. In either of the two input noise models
!i.e., diffusion or switching input noise", with diffusion con-
stant held fixed, Kd+.−1 or Kd+/−1. See Appendix D for
notes on the effects of nonspecific binding of transcription
factors to the DNA.

Collecting all our thoughts on the costs of coding, we can
write down the “cost functional” as the sum of input and
output cost contributions:

.C#pTF!c"$/ =
v1

.
% dc pTF!c"c +

v2

-
% dc pTF!c"% dg p!g)c"g ,

!21"

where v1 and v2 are proportional to the unknown costs per
molecule of input or output, respectively, and - and . are
noise parameters of Table I. This ansatz captures the intuition
that, while decreasing noise strengths will increase informa-
tion transmission, it will also increase the cost. Instead of
maximizing the information without regard to the cost, the
new problem to extremize is

L#pTF!c"$ = I#pTF!c"$ − 2.C#pTF!c"$/ − %% dc pTF!c" ,

!22"

and the Lagrange multiplier 2 has to be chosen so that the
cost of the resulting optimal solution .C#pTF

! !c"$/ equals some
predefined cost C0 that the cell is prepared to pay.

We now wish to recreate the noise plane of Fig. 3, while
constraining the total cost of each solution to C0. To be con-
crete and pick the value for the cost and proportionality con-
stants in Eq. !21", we use the estimates from Drosophila
noise measurements and analysis in Refs. #22,35$, which as-
sign to the system denoted by a blue dot in Fig. 3!a" the
values of 4800 bicoid molecules of input at Kd, and a maxi-
mal induction of g044000 hunchback molecules if the burst
size b is 10. Figure 7!a" is the noise plane for an activator
with no cooperativity, as in Fig. 3, but with the cost limited
to an average total of C047000 molecules of input and out-
put per nucleus. There is now one optimal solution denoted
by a green dot !with a dominant input noise contribution"; if
one tries to choose a system with lower input or output noise,
the cost constraint forces the input distribution pTF!c" and the
output distribution pexp!g" to have very low probabilities at
high induction, consequently limiting the capacity.

Clearly, a different system will be optimal if another total
allowed cost C0 is selected. The dark green line on the noise
plane in Fig. 7!a" corresponds to the flow of the optimal
solution for an activator with no cooperativity if the allowed
cost is increased, and the corresponding cost-capacity curve
is shown in Fig. 7!b". The light green line is the trajectory of
the optimal solution in the noise plane of the activator sys-
tem with cooperativity h=3, and the dark and light red tra-
jectories are shown for the repressor with h=1 and 3, respec-
tively. We note first that the behavior of the cost function is
quite different for the activator !where low input implies low
output and therefore low cost; and conversely high input
means high output and also high cost" and the repressor
!where input and output are mutually exclusively high or low
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and the cost is intermediate in both cases". Second, in Fig.
7!b" we observe that the optimal capacity as a function of
cost is similar for the activators and repressors, in contrast to
the comparison of Fig. 4, where repressors provided higher
capacities. Third, we note in the same figure that increasing
the cooperativity at fixed noise strength . brings a substan-
tial increase, of almost 1 bit over the whole cost range, in the
channel capacity, in agreement with our previous observa-
tions about the interaction between capacity and the dynamic
range. The last and perhaps the most significant conclusion is
that, even with input distributions matched to maximize the
transmission at a fixed cost, the capacity still only scales
roughly linearly with the logarithm of the number of avail-
able signaling molecules, and this fact must ultimately be
limiting in a single regulatory element.

Finally, we comment on the balance between input and
output noise. The noise, which limits information transmis-
sion, ultimately depends on the number of molecules used
for signaling, and our formulation of the cost constraints al-
lows, in effect, for some fixed total number of molecules to
be distributed between input and output. When this assign-
ment of molecules !and hence metabolic cost" to the input
and output is chosen to maximize information transmission,
we see for the example in Fig. 7!a" that the dominant noise

source is at the input. This is interesting not least because,
until recently, most analyses of noise in gene expression have
focused on output noise sources, the randomness in tran-
scription and translation. Our results suggest that emerging
evidence for the importance of input noise sources
#22,34–36,45$ may reflect selection for biological mecha-
nisms that maximize information transmission at fixed cost.

V. DISCUSSION

We have tried to analyze a simple regulatory element as
an information processing device. One of our major results is
that one cannot discuss an element in isolation from the sta-
tistics of the input that it is exposed to. Yet in cells the inputs
are often transcription factor concentrations that encode the
state of various genetic switches, from those responsible for
cellular identity to those that control the rates of metabolism
and cell division, and the cell exerts control over these con-
centrations. While it could use different distributions to rep-
resent various regulatory settings, we argue that the cell
should use the one distribution that allows it to make the
most of its genetic circuitry—the distribution that maximizes
the dependency, or mutual information, between inputs and
outputs. Mutual information can then be seen both as a mea-
sure of how well the cell is doing by using its encoding
scheme, and the best it could have done using the optimal
scheme, which we can compute; comparison between the
optimal and measured distributions gives us a sense of how
close the organism is to the achievable bound #23$. More-
over, mutual information has absolute units, i.e., bits, that
have a clear interpretation in terms of the number of discrete
distinguishable states that the regulatory element can resolve.
This last fact helps clarify the ongoing debates about what is
the proper noise measure for genetic circuits, and in what
context a certain noise is either “big” or “small” !as it is
really a function of the inputs". Information does not replace
the standard noise-over-the-mean measure—noise calcula-
tions or measurements are still necessary to compute the el-
ement’s capacity—but does give it a functional interpreta-
tion.

We emphasize that formulating a correct model of signals
and noise is a separate problem from computing the informa-
tion capacity and the optimal input distribution once the
transfer function and noise are known. Even though micro-
scopic noise models can, in combination with experiment, be
used to infer !and are thus a probe for" the underlying mo-
lecular processes that give rise to the observed noise #35$, for
the capacity calculation itself this microscopic level of detail
is not required. When making a connection between theory
and experiment for a concrete genetic regulatory element,
one only needs a good phenomenological model, i.e., a good
fit for the measurements of ḡ!c" and "g!c". This is perhaps
most clearly demonstrated in Ref. #23$, where the informa-
tion theoretic framework developed here is applied to the
high-precision measurements of the noise in the bicoid-
hunchback system of the fruit fly. For a theoretical discussion
like the one presented here, it is, however, convenient to
parametrize the noise with a small number of tunable
“knobs” that regulate the strengths of various kinds of noise
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FIG. 7. !Color online" Effects of metabolic or time costs on the
achievable capacity of simple regulatory elements. Contours in !a"
show the noise plane for noncooperative activator from Fig. 3, with
the imposed constraint that the average total !input+output" cost is
fixed to some C0; as the cost is increased, the optimal solution
!green dot" moves along the arrows on a dark green line !A1"; the
contours change correspondingly, not shown. Light green line !A3"
shows activator with cooperativity h=3, dark !R1" and light red
lines !R3" show repressors without and with cooperativity !h=3".
!b" shows the achievable capacity as a function of cost for each line
in !a".
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sources, and observe the scaling of channel capacity as the
noise parameters are varied.

In this paper we have considered a class of simple param-
etrizations of signals and noise that can be used to fit mea-
surements and capture all of the measured noise in several
model systems, such as the bicoid-hunchback system of the
fruit fly, a number of yeast genes, and the lac repressor in
Escherichia coli !see Refs. #23,41$ for the last". We find that
the capacities of these realistic elements are generally larger
than 1 bit, and can be as high as 2 bits. By simple inspection
of optimal output distributions in Fig. 3!b" or Fig. 3!c" it is
difficult to say anything about the capacity: the distribution
might look bimodal yet carry more than one bit, or might
even be a monotonic function without any obvious structure,
indicating that the information is encoded in the graded re-
sponse of the element. When the noise is sufficiently high, on
the other hand, the optimal strategy is that of achieving one
bit of capacity and only utilizing maximum and minimum
available levels of transcription factors for signaling. The set
of distributions that achieve capacities close to the optimal
one is large, suggesting that perhaps 1-bit switches are not
difficult to implement biologically, while in contrast we find
that transmission of much more than one bit requires some
tuning of the system.

Finally, we discussed how additional biophysical con-
straints can modify the channel capacity. By assuming a lin-
ear cost model for signaling molecules and a limited input
dynamic range, the capacity and cost couple in an interesting
way and the maximization principle allows new questions to
be asked. For example, increasing the cooperativity reduces
the cost, as we have shown; on the other hand, it increases
the sensitivity to fluctuations in the input, because the input
noise strength . is proportional to the square of Hill’s coef-
ficient, h2. In a given system we could therefore predict the
optimal effective cooperativity, if we knew the real cost per
molecule. Further work is needed to tease out the conse-
quences of cost !if any" from experimental data.

The principle of information maximization clearly is not
the only possible lens through which regulatory networks are
to be viewed. One can think of examples where the system
either does not reach a steady state or there are constraints on
the dynamics, something that our analysis has ignored by
only looking at steady state behavior; for instance, consider
genetic regulatory circuits that execute limit cycle oscilla-
tions, to which our analysis is not applicable !but for which
we also do not have any experimental data on noise"; or the
chemotactic network of Escherichia coli that has to perfectly
adapt in order for the bacterium to be able to climb the at-
tractant gradients. Alternatively, suppose that a system needs
to convey only a single bit, but it has to be done reliably in a
fluctuating environment, perhaps by being robust to the
changes in outside temperature. In this case it seems that
both concepts, that of maximal information transmission and
the robustness to fluctuations in certain auxiliary variables
which also influence the noise, could be included into the
same framework, but the issue needs further work. More
generally, however, these and similar examples assume that
one has identified in advance the biologically relevant fea-
tures of the system, e.g., perfect adaptation or robustness,
and that there exists a problem-specific error measure which

the regulatory network is trying to minimize. Such a measure
could then either replace or complement the assumption-free
information theoretic approach presented here.

We emphasize that the kind of analysis carried out here is
not restricted to a single regulatory element. As was pointed
out in the introduction, the inputs I and the outputs O of the
regulatory module can be multidimensional, and the module
could implement complex internal logic with multiple feed-
back loops. It seems that especially in such cases, when our
intuition about the noise—now a function of multiple
variables—starts breaking down, the information formalism
could prove to be helpful. Although the solution space that
needs to be searched in the optimization problem grows ex-
ponentially with the inputs, there are biologically relevant
situations that nevertheless appear tractable: for example,
when there are multiple readouts of the same input, or com-
binatorial regulation of a single output by a pair of inputs; in
addition, knowing that the capacities of a single input-output
chain are on the order of a few bits also means that only a
small number of distinct input levels for each input need to
be considered. Some cases of interest therefore appear im-
mediately amenable to biophysical modeling approaches and
the computation of channel capacities, as presented in this
paper.

We have focused here on the theoretical exploration of
information capacity in simple models. It is natural to ask
how our results relate to experiment. Perhaps the strongest
connection would be if biological systems really were se-
lected by evolution to optimize information flow in the sense
we have discussed. If this optimization principle applies to
real regulatory elements, then, for example, given measure-
ments on the input-output relation and noise in the system
we can make parameter free predictions for the distribution
of expression levels that cells will use. Initial efforts in this
direction, using the bicoid-hunchback element in the Droso-
phila embryo as an example, are described in Ref. #23$. It is
worth noting that a parallel discussion of optimization prin-
ciples for information transmission has a long history in the
context of neural coding, where we can think of the distribu-
tion on inputs as given by the sensory environment and op-
timization is used to predict the form of the input-output
relation #18–21$. Although there are many open questions, it
would be attractive if a single principle could unify our un-
derstanding of information flow across such a wide range of
biological systems.
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APPENDIX A: FINDING OPTIMAL
CHANNEL CAPACITIES

If we treat the kernel on a discrete !c ,g" grid we can
easily choose such pTF!c" as to maximize the mutual infor-
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mation I!c ;g" between the expression level and the concen-
tration. The problem can be stated in terms of the following
variational principle:

L#pTF!c"$ = 1
c,g

p!g)c"pTF!c"ln
p!g)c"
pexp!g"

− %1
c

pTF!c" ,

!A1"

where the multiplier % enforces the normalization of pTF!c",
and pexp!g" itself is a function of the unknown distribution
#since pexp!g"=1cp!g )c"pTF!c"$. The solution pTF

! !c" of this
problem achieves the capacity I!c ;g" of the channel. For
brevity, in the rest of this appendix, we explicitly suppress
subscripts on probability distributions, and distinguish them
by using the argument name #i.e., p!c" is pTF!c" and p!g" is
pexp!g"$.

The original idea behind the Blahut-Arimoto approach
#33$ was to understand that the maximization of Eq. !A1"
using variational objects p!ci" is equivalent to the following
maximization:

max
p!c"

L#p!c"$ 4 max
p!c"

max
p!c)g"

L"#p!c",p!c)g"$ , !A2"

where

L"#p!c",p!c)g"$ = 1
g,c

p!c"p!g)c"ln
p!c)g"
p!c"

− %1
c

p!c" .

!A3"

In words, finding the extremum in the variational object p!c"
is equivalent to a double maximization of a modified La-
grangian, where both p!c" and p!g )c" are treated as indepen-
dent variational objects. The extremum of the modified La-
grangian is achieved exactly when the consistency condition
p!c )g"= p!g)c"p!c"

1cp!g)c"p!c" holds. This allows us to make an iterative
algorithm that we detail below, where Eq. !A3" is solved for
the optimal p!c" and evaluated at some “known” p!c )g",
which is in turn updated with the newly obtained estimate of
p!c".

Before describing the algorithm let us also suppose that
each input signal c carries some metabolic or time cost to the
cell. Then we can introduce a cost vector v!c" that assigns a
cost to each codeword c, and require of the solution the
following:

1
c

p!c"v!c" 3 C0, !A4"

where C0 is the maximum allowed expense. The constraint
can be introduced into the functional, Eq. !A1" or Eq. !A3",
through an appropriate Lagrange multiplier; the same ap-
proach can be taken to introduce the cost of coding for the
output words, 1g1cp!g )c"p!c"v!g", because it reduces to an
additional “effective” cost for the input, ṽ!c"=1gp!g )c"v!g".

As was pointed out in the main text, after discretization
we have no guarantees that the optimal distribution p!ci" is
going to be smooth. One way to address this problem is to
enforce the smoothness on the scale set by the precision at
which the input concentration can be controlled by the cell,
"c!c̄", by penalizing big derivatives in the Lagrangian of Eq.

!A3". An alternative way is to find the spiky solution !with-
out imposing any direct penalty term", but interpret it not as
a real, “physical,” concentration distribution, but rather as
the distribution of concentrations that the cell attempts to
generate, c!. In this case, however, the limited resolution of
the input "c!c̄" must be referred to the output as an additional
effective noise in gene expression, "g

2="c
2! !ḡ

!c "2. The optimal
solution p!c!" is therefore the distribution of the levels that
the cell would use if it had infinitely precise control over
choosing various c! !i.e., if the input noise were absent", but
the physical concentrations are obtained by convolving this
optimal result p!c!" with a Gaussian of width "c!c!". Al-
though we chose to use the second approach to compute the
results of this paper, we will, for completeness, describe next
how to include the smoothness constraint into the functional
explicitly.

If the smoothness of the input distribution p!c" is explic-
itly constrained in the optimization problem, then it will be
controllable through an additional Lagrange multiplier, and
both ways of computing the capacity—that of referring the
limited input resolution "c!c̄" to the noise in the output, and
that of including it as a smoothness constraint on the input
distribution—will be possible within a single framework. We
proceed by analogy to field theories in which the kinetic
energy terms of the form *)"f!x")2dx constrain the gradient
magnitude, and form the following functional:

L#p!c"$ = I!c;g" − 401
c

p!c" !A5"

− 211
c

p!c"v1!c" − 221
g

p!g"v2!g" !A6"

− )1
c
,5p

5c
"!c"-2

. !A7"

Equation !A5" maximizes the capacity with respect to varia-
tional objects p!c" while keeping the distribution normalized;
Eq. !A6" imposes cost v1!c" on input symbols and cost v2!g"
on output symbols; finally, Eq. !A7" limits the derivative of
the resulting solution. The difference operator 5 is defined
for an arbitrary function f!c":

5f!c" = f!ci+1" − f!ci" . !A8"

"!c" assigns a different weight to various intervals on the
input axis c. If the input cannot be precisely controlled, but
has an uncertainty of "!c" at mean input level c, we require
that the optimal probability distribution must not change
much as the input fluctuates on the scale "!c". In other
words, we require for each input concentration that

$p =
5p

5c
"!c" 6 1; !A9"

the term in Eq. !A7" constrained by Lagrange multiplier )
can be seen as the sum of squares of such variations over all
possible values of the input.

By differentiating the functional Eq. !A3" that includes
the relevant constraints, with respect to p!ci" we get the fol-
lowing equation:
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0 = 1
g

p!g)ci"ln p!ci)g" − ln p!ci" − 4 − 21v1!ci"

− 221
g

p!g)ci"v2!g" !A10"

+ ),#p!ci+1" − p!ci"$
"2!ci"

!ci+1 − ci"2

− #p!ci" − p!ci−1"$
"2!ci−1"

!ci − ci−1"2- . !A11"

Let us denote by F(c , p!c")=5 5p
!5c"2 "2 the term in large pa-

rentheses. The solution for p!c" is therefore given by

p!c" =
1
Z

exp,1
g

p!g)c"ln p!c)g" − 21v1!c"

− 221
g

p!g)c"v2!g" + ) F„c,p!c"…- . !A12"

We can now continue to use the Blahut-Arimoto trick of
pretending that p!c )g" is an independent variational object,
and that p!c" has to be solved with p!c )g" held fixed; how-
ever, even in that case, Eq. !A12" is an implicit equation for
p!c" which needs to be solved by numerical means. The
complete iterative prescription is therefore as follows:

pn!g" = 1
c

p!g)c"pn!c" , !A13"

pn!c)g" =
p!g)c"pn!c"

pn!g"
, !A14"

pn+1!c" =
1
Z

exp,1
g

p!g)c"ln pn!c)g" − 21v1!c"

− 221
g

p!g)c"v2!g" + )F„c,pn+1!c"…- . !A15"

Again, Eq. !A15" has to be solved on its own by numerical
means as the variational objects for iteration !n+1" appear
both on the left- and right-hand sides. The input and output
costs of coding are neglected if one sets 21=22=0; like-
wise, the smoothness constraint is ignored for )=0, in
which case Eq. !A15" is the same as in the original Blahut-
Arimoto derivation and it gives the value of pn+1!c" explic-
itly.

For the capacities computed in this paper we have calcu-
lated the effective output noise that includes the intrinsic
output noise as well as the input noise that has been referred
to the output !see Sec. III"; we can therefore set )=0. This
approach treats all sources of noise on the same footing and
allows us to directly compare the magnitudes of noise
sources at the input and the output. We also note that it
makes sense to compute and compare the optimal distribu-
tion of outputs rather than inputs: the input-output kernels
are degenerate and there are various input distributions !dif-
fering either in the regions that give saturated or zero re-
sponse, or by having variations on a scale below "c" that will
yield essentially the same distribution of outputs.

APPENDIX B: VALIDITY OF LANGEVIN
APPROXIMATIONS

The Langevin approximation assumes that the fluctuations
of a quantity around its mean are Gaussian and proceeds to
calculate their variance #42$. For the calculation of exact
channel capacity we must calculate the full input-output re-
lation, p!g )c". Even if the Langevin approach ends up giving
the correct variance as a function of the input, "g!c", the
shape of the distribution might be far from Gaussian. We
expect such a failure when the number of mRNA molecules
is very small: the distribution of expression levels might be
then multipeaked, with peaks corresponding to b ,2b ,3b , . . .
proteins, where b is the burst size !number of proteins pro-
duced per transcript lifetime".

In the model used in Eq. !18", the parameter -= !1
+b" /g0 determines the output noise; g0=bm̄, where m̄ is the
average number of transcripts produced during the integra-
tion time !i.e., the longest averaging time scale in the prob-
lem, for example the protein lifetime or cell doubling time".
If b,1, then the output noise is effectively determined only
by the number of transcripts, -51 / m̄. We should therefore
be particularly concerned what happens as m̄ gets small.

Our plan is therefore to solve for p!g )c" exactly by find-
ing the stationary solution of the master equation in the case
where the noise consists of the output and switching input
contributions. In this approach, we explicitly treat the fact
that the number of transcribed messages, designated by m, is
discrete. We start by calculating pi!m )c , t". The state of the
promoter is described by index i, which can be 0 or 1, de-
pending on whether the promoter is bound by the transcrip-
tion factor or not, respectively. Normalization requires that
for each value of c

1
i=0,1

1
m

pi!m)c,t" = 1. !B1"

The time evolution of the system is described by the follow-
ing set of equations for an activator:

!p0!m)c,t"
!t

= Re#p0!m − 1)c,t" − p0!m)c,t"$

−
1
*

#mp0!m)c,t" − !m + 1"p0!m + 1)c,t"$

− k−p0!m)c,t" + k+cp1!m)c,t" , !B2"

!p1!m)c,t"
!t

= −
1
*

#mp1!m)c,t" − !m + 1"p1!m + 1)c,t"$

+ k−p0!m)c,t" − k+cp1!m)c,t" , !B3"

where * is the integration time, k− is the rate for switching
into the inactive state !off rate of the activator", k+ is the
second-order on rate, and Re is the rate of mRNA synthesis.
These constants combine to give m̄=Re* and the input
switching noise strength /= !k−*"−1; see Table I. This set of
equations is supplemented by appropriate boundary condi-
tions for m=0. To find a steady state distribution p!m )c , t
→1"= p!m )c", we set the left-hand side to zero and rewrite
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the set of equations !with high enough cutoff value of mmax"
in matrix form:

M!c"p!c" = b , !B4"

where p= (p0!0 )c" , p1!0 )c" , p0!1 )c" , p1!1 )c" , . . .) and b
= !0,0 , . . . ,0 ,1". The matrix M #of dimension 2!mmax+1"
+1 rows and 2!mmax+1" columns$ contains, in its last row,
only 1’s, which enforces normalization. The resulting system
is a nonsingular band-diagonal system that can be easily in-
verted. The input-output relation for the number of messages
is given by taking p!m )c"= p0!m )c"+ p1!m )c".

Having found the distribution for the number of tran-
scripts, we then convolve it with another Poisson process
p!g ) .g/=b m", i.e., p!g )c"=1mp!m )c"p!g ) .g/=b m". Fi-
nally, the result is rediscretized such that the mean expres-
sion ḡ runs from 0 to 1.

Note that the Langevin approximation depends only on
the combination of the burst size b and the mean number of
transcripts m̄ through -; in contrast, the master equation so-
lution depends on both b and m̄ independently. The generali-
zation of this calculation to repressors or Hill-coefficient-
type cooperativity is straightforward.

Figure 8!c" shows that the Langevin approximation yields

correct second moments of the output distribution; however,
Gaussian distributions themselves are, for large burst sizes
and small numbers of messages, inconsistent with the exact
solutions, as can be seen in Fig. 8!a". In the opposite limit,
where the number of messages is increased and burst size
kept small #see Fig. 8!b"$, normal distributions are an excel-
lent approximation. Despite these difficulties, the informa-
tion capacity calculated with either Gaussian or master input-
output relations differs by at most 12% over a large range of
burst sizes b and values for -, illustrated by Fig. 8!d".

APPENDIX C: FINE TUNING OF OPTIMAL
DISTRIBUTIONS

To examine the sensitivity to the perturbations in the op-
timal input distributions for Fig. 6 we need to generate an
ensemble of perturbations. We pick an ad hoc prescription,
whereby the optimal solution is taken, and we add to it the
five lowest harmonic modes on the input domain, each with
a weight that is uniformly distributed on some range. The
range determines whether the perturbation is small or not.
The resulting distribution is clipped to be positive and renor-
malized. This choice was made to induce low-frequency per-
turbations !high-frequency perturbations get averaged out
because the kernel is smooth". Then, for an ensemble of 100
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FIG. 8. !Color online" Exact solutions !black" for input-output relations, p!g )c", compared to their Gaussian approximations !gray". !a"
shows the distribution of outputs at maximal induction, p!g )cmax", for a system with a large burst size b=54 and a large output noise -
=1 /6 !i.e., the average number of messages is 6, as is evident from the number of peaks, each of which corresponds to a burst of translation
at different number of messages". !b" shows the same distribution for smaller output noise, b=52 and -=1 /50; here the Gaussian approxi-
mation performs well. Both cases are computed with switching noise parameter /=1 /50 and cooperativity of h=2. !c" shows in color code
the error made in computing the standard deviation of the output given c; the error measure we use is the maximum difference between the
exact and Gaussian results over the full range of concentrations maxc abs'#"g!c" /g0$master− #"g!c" /g0$Gaussian(. As expected the error de-
creases with decreasing output noise. !d" shows that the capacity is overestimated by using an approximate kernel, but the error again
decreases with decreasing noise as Langevin becomes an increasingly good approximation to the true distribution. In the worst case the
approximation is about 12% off. The Gaussian computation depends only on - and not separately on burst size, so we plot only one curve
for b=1.
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such perturbations pi!c", i=1, . . . ,100, and for every system
of the noise plane in Fig. 3!a", the divergence of the per-
turbed input distribution from the true solution di
=DJS(pi!c" , pTF

! !c") is computed, as well as the information
transmission Ii= I#p!g )c" , pi!c"$. Figure 9 plots the !di , Ii"
scatter plots for 373 representative systems with varying
amounts of output !-" and input !." noise, taken from Fig.
3!a" uniformly along the horizontal and vertical axes.

Figure 9 shows that, as we move toward systems with
higher capacity !lower left corner", perturbations to the opti-
mal solution that are at the same distance from the optimum
as in the low-capacity systems !upper right corner", will
cause greater relative loss !and therefore an even greater ab-
solute loss" in capacity. As expected, higher-capacity systems
must be better tuned, but even for the highest-capacity sys-
tem considered, a perturbation of around dJS50.2 will cause
only an average 15% loss in capacity. We also note that for
systems with high capacity the linear relationship between
the the divergence di and capacity Ii provides a better fit than
for systems with small capacity.

APPENDIX D: NONSPECIFIC BINDING

One needs to make a careful distinction between the total
concentration of the input transcription factors, ct, and the
free concentration cf, diffusing in solution in the nucleus. We
imagine the true binding site embedded in a pool of nonspe-

cific binding sites—perhaps all other short fragments of
DNA—and there being an ongoing competition between one
functional site !with strong affinity" and large number of
weaker nonspecific sites. If these nonspecific sites are
present at concentration 8 in the cell, and have affinities
drawn from some distribution p!K", the relationship between
the free and the total concentration of the input is

ct = cf + 8% dK p!K"
cf

cf + K
. !D1"

Importantly, the concentration that enters all information ca-
pacity calculations is the free concentration cf, because it
directly determines both the promoter occupancy in Eq. !12"
as well as the diffusive noise; on the other hand, the cell can
influence the free concentration only by producing more or
less of the transcription factor, i.e., by varying !and paying
for" the total concentration. If the free concentration is well
below the strength of the nonspecific binding .K/, Eq. !D1"
can be approximated by ct5cf!1+8 / .K/", with the total and
free concentrations being proportional to each other. Because
the cost functional Eq. !21" is only determined to within a
factor anyway, the presence of nonspecific sites will effec-
tively just rescale the cost per free molecule of transcription
factor. A separate calculation is needed to show that the pres-
ence of nonspecific binding does not appreciably increase the
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