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Evolutionary theory predicts that a population in a new environ-
ment will accumulate adaptive substitutions, but precisely how
they accumulate is poorly understood. The dynamics of adaptation
depend on the underlying fitness landscape. Virtually nothing is
known about fitness landscapes in nature, and few methods allow
us to infer the landscape from empirical data. With a view toward
this inference problem, we have developed a theory that, in the
weak-mutation limit, predicts how a population’s mean fitness and
the number of accumulated substitutions are expected to increase
over time, depending on the underlying fitness landscape. We find
that fitness and substitution trajectories depend not on the full dis-
tribution of fitness effects of available mutations but rather on the
expected fixation probability and the expected fitness increment
of mutations. We introduce a scheme that classifies landscapes
in terms of the qualitative evolutionary dynamics they produce.
We show that linear substitution trajectories, long considered the
hallmark of neutral evolution, can arise even when mutations are
strongly selected. Our results provide a basis for understanding the
dynamics of adaptation and for inferring properties of an organ-
ism’s fitness landscape from temporal data. Applying these meth-
ods to data from a long-term experiment, we infer the sign and
strength of epistasis among beneficial mutations in the Escherichia
coli genome.

epistasis | fitness trajectory | substitution trajectory | weak mutation | evolution

E volutionary theory predicts that mean fitness will increase over
time when a population encounters a new environment. This

behavior is observed in natural and laboratory populations. Yet
evolutionary theory offers few quantitative predictions for the
dynamics of adaptation (1). The primary difficulty is that adap-
tation depends on the shape of the underlying fitness landscape.
Unfortunately, mapping out an organism’s fitness landscape is vir-
tually impossible because of its vast dimensionality and the coarse
resolution of fitness measurements. Moreover, because of the
scarcity of such measurements, most theoretical work has been
pursued in isolation from data.

Much of the theory of adaptation is concerned with understand-
ing the dynamics on uncorrelated, or “rugged”, fitness landscapes.
This approach, pioneered by Kingman (2) and Kauffman and
Levin (3), has generated many important results (e.g. refs. (4–7)).
But many of these results do not extend to landscapes that are cor-
related. One striking example is the expected length of an adaptive
walk: It is extremely short on rugged landscapes (3, 8), but it can be
very long on correlated landscapes (9). Although data are scarce, a
long-term evolution experiment in Escherichia coli has found that
adaptation continues to proceed even after 20,000 generations in a
constant environment (10). This observation suggests that fitness
landscapes in nature are correlated.

A second body of work examines relatively realistic, complex
genotype-to-fitness maps—e.g. an RNA folding algorithm—and
studies adaptation on the resulting correlated landscapes by com-
puter simulation (e.g. refs. (3, 11–15)). This approach provides
important insights into the process of adaptation, and it pro-
duces quantitative predictions about the specific systems being
simulated. But such results are difficult to generalize.

A third approach, orthogonal to the first two, was introduced by
Gillespie (16, 17) and revived more recently by Orr (8, 18, 19). It
utilizes extreme-value theory to identify features of the adaptation
process that are independent of the underlying fitness landscape.
Although helpful for understanding some fundamental properties
of evolution, this approach suffers from a few serious drawbacks.
Most importantly, by focusing on features of adaptation that are
independent of the fitness landscape, the Orr–Gillespie theory
does not elucidate how the structure of the landscape influences
adaptation, nor does it allow us to infer the landscape from empir-
ical data. Yet this is a question of central interest in evolutionary
biology. In addition, most of the predictions of this theory concern
a single adaptive step (8, 18, 19), and those predictions that extend
to multiple steps hold again only for uncorrelated landscapes (20).

In order to address these shortcomings, we present here an ele-
mentary theory of adaptation on a correlated fitness landscape.
Our theory makes an explicit connection between the shape of
the fitness landscape and observable features of adaptation, and
it therefore allows us to infer important properties of the fitness
landscapes from data. Experimental studies of microbial evolu-
tion typically report the mean fitness of the population (21, 22)
and the mean number of accumulated substitutions (23, 24) over
time; therefore we develop a theory that predicts these dynamic
quantities, which we call the fitness and substitution trajectories,
in terms of the underlying fitness landscape.

To develop this theory, we need a sufficiently general but
tractable description of a correlated fitness landscape. As in Gille-
spie’s model (17), we will describe the fitness landscape by specify-
ing the distribution of fitnesses of single-mutant neighbors for each
genotype, which we call the “neighbor fitness distribution” (NFD).
On an uncorrelated landscape, all genotypes share the same NFD.
We introduce correlations by assuming that the same NFD is
shared among genotypes that have the same fitness, but genotypes
of different fitnesses may have different NFDs. We say that such
landscapes are fitness-parameterized because the possible conse-
quences of a mutation are determined only by the fitness of the
parental genotype (52). This framework accommodates arbitrary
correlations introduced by nonneutral mutations. But neutral net-
works (14, 25, 26) or mutations with equal effect but different evo-
lutionary potential fall outside of the scope of fitness-parametrized
landscapes. Nevertheless, the space of fitness-parametrized land-
scapes is very large and contains most of the landscapes studied
in previous literature.

To understand this space better, we will first explore three classi-
cal fitness landscapes: the uncorrelated landscape (2, 5, 6, 20, 27),
the (additive) nonepistatic landscape (28, 29), and the landscape
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with a constant distribution of selection coefficients (30, 31).
We will demonstrate how the choice of landscape influences the
dynamics of adaptation. Having gained some insight from these
examples, we will classify fitness-parametrized landscapes in terms
of the qualitative evolutionary dynamics they produce. Remark-
ably, the qualitative dynamics fall into 14 possible classes, which
include, among others, the well-known classical examples. By
comparing these classes against observations from microbial evo-
lution experiments (21), we will infer the space of landscapes that,
given our simplifying assumptions, are compatible with existing
data.

We will study the dynamics of adaptation in the limit of weak
mutation (8, 16, 17, 32), which allows us to ignore the effects of
multiple, competing beneficial mutations (30, 31, 33, 34). This
approach is mathematically convenient, and, more importantly,
it allows us to study the dynamics induced by the fitness land-
scape itself in isolation from those that result from clonal inter-
ference (30, 31, 35, 36). Our analysis will therefore provide a
null expectation against which to compare more complex models
or data.

Results
Three Classical Fitness Landscapes. We describe a fitness landscape
by a family of probability distributions, Φx. Φx(y)dy denotes the
probability that a mutation arising in an individual of fitness x will
have a fitness in [y, y+dy]. The space of fitness-parametrized land-
scapes includes, among others, such well-known (2, 5, 6, 20, 27, 29–
31) landscapes as (i) the “house of cards” (HOC) or the uncor-
related landscapes, for which all genotypes have the same NFD
Φx(y) = Ψ(y); (ii) the non-epistatic (NEPI) landscapes, for which
the distribution of fitness effects of mutations is the same for all
genotypes, so that the NFD is given by Φx(y) = Ψ(y − x), and (iii)
the “stairway to heaven” (STH) landscapes, for which the distrib-
ution of selection coefficients is the same for all genotypes, so that
the NFD is given by Φx(y) = x−1Ψ(x−1(y − x)).

The definitions of these three well-known landscapes are sum-
marized in Table 1, where we have assumed that the NFD follows
an exponential form. We will derive expressions for the expected
fitness and substitution trajectories on each of these landscapes.
Our results also hold qualitatively if we replace the exponential
distribution by any other distribution from the Gumbel domain
of attraction as predicted by the Orr–Gillespie theory (18). Note
that there are no deleterious or neutral mutations in the NEPI and
STH landscapes (Table 1), but our conclusions would not change
if we added such mutations (see SI Appendix).

Before we derive analytic expressions for the dynamics of adap-
tation on the three classical landscapes, we first develop some
intuitive expectations. On all landscapes, we expect substitutions
to accrue and the mean fitness to increase over time. For the
HOC landscapes, we expect that the rate of fitness increase
should slow down as the population becomes more adapted. To
see this slowdown, imagine a population initially at fitness x0,
where

∫ ∞
x0

Ψ(y)dy = 0.5, i.e. 50% of mutations are beneficial. If

a beneficial mutation arises and fixes, providing fitness x1 > x0,
then this event can only reduce the pool of remaining beneficial
mutations—i.e.

∫ ∞
x1

Ψ(y)dy < 0.5. Thus, the rate of fitness increase
should be reduced as adaptation proceeds on the HOC landscape.
By contrast, on a STH landscape, we expect that the rate of fitness
increase will increase as the population adapts. Indeed, the fraction
of mutations that are adaptive does not change as fitness increases,
but the fitness increment of such mutations grows linearly with
the fitness of the parent (because the selection coefficient stays
the same). These simple considerations indicate that HOC land-
scapes are antagonistically epistatic, whereas STH landscapes are
synergistically epistatic. We call the landscape Φx(y) = Ψ(y − x)
nonepistatic because on this landscape the distribution of fitness
increments of mutations does not depend upon the fitness of
the parental genotype. If fitness effects were viewed multiplica-
tively, however, then the STH landscape would be considered
nonepistatic—although we do not adapt this convention here (see
ref. 28 for an extensive discussion on this topic). Moreover, as we
show below, the STH landscape produces unrealistic evolutionary
dynamics.

Fitness and Substitution Trajectories. In order to analyze the
dynamics of adaptation, we consider an asexual population of fixed
size N that evolves according to the infinite-sites Wright–Fisher
(WF) model (see Materials and Methods for details). We assume
that the mutation rate is sufficiently small that, at most, one mutant
segregates in the population at any time (8, 17). Thus, the popula-
tion is essentially always monomorphic, and it can be characterized
at each time by its fitness x. When a mutation with fitness y arises,
it either fixes instantaneously with Kimura’s fixation probability
πx(y) = (1 − e−2sx(y))/(1 − e−2Nsx(y)) or is instantaneously lost with
probability 1 − πx(y) where sx(y) is the selection coefficient (see
Materials and Methods). In this limit, the adaptive walk of the
population is described by a continuous-time, continuous-space
Markov chain. We emphasize that, in contrast to the “greedy”
adaptive walks typically studied in the literature on rugged fit-
ness landscapes (3, 4), the adaptive walks studied here never stop.
Even if a population reaches a local fitness maximum, a deleterious
mutation will eventually fix, and the walk will continue.

We have developed a method for efficiently computing the full
ensemble distribution of fitnesses and substitutions of the popu-
lation at time t, given that its initial fitness was x0 at time zero
(see SI Appendix). Here we focus on two important statistics of
these distributions: the expected fitness of the population F(t) at
time t, and the expected number of substitutions S(t) accumulated
in the population by time t. We call these quantities the fitness
trajectory and the substitution trajectory, respectively. If we mea-
sure time in the expected number of mutations, these functions
approximately satisfy the following equations (see Materials and
Methods):

Ḟ = r(F), F(0) = x0 [1]

Ṡ = q(F), S(0) = 0, [2]

Table 1. Classical fitness landscapes with the exponential form and the corresponding fitness and substitution trajectories obtained from
Eqs. 1 and 2

NFD Expected fitness increment∗ Fitness trajectory Expected fixation probability∗ Substitution trajectory
Φx(y) r(x) F(t) q(x) S(t)

HOC 1
a e− y

a , y ≥ 0 4a2e− x
a a ln

(
e

x0
a + 4at

)
2ae− x

a 1
2a ln

(
e

x0
a + 4at

)
− x0

2a2

NEPI 1
a e− y−x

a , y ≥ x 4a2

x

√
x2

0 + 8a2t 2a
x

1
2a

(√
x2

0 + 8a2t − x0

)

STH 1
ax e− y−x

ax , y ≥ x 4a2(1+a)
(1+2a)2 x x0 exp

(
4a2(a+1)
(2a+1)2 t

)
2a

1+2a
2a

2a+1 t

∗Expressions for the r- and q-functions are derived in the limit x % 1 (HOC, NEPI) and under the approximation N % 1 (HOC, NEPI, STH). These approximations
are highly accurate, especially for large x (see Fig. 1). See SI Appendix for details.
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Fig. 1. Dynamics of adaptation on three classical fitness landscapes. Rows correspond to fitness landscapes. The first column graphs the NFD, Φx (y), for two
representative values of the parental fitness, x0 = 1 and x0 = 4. The second and third columns show the fitness and substitution trajectories for a population
starting with fitness x0 = 2. Black lines correspond to the theoretical predictions of Eqs. 1 and 2; gray lines show the results of stochastic simulations; dashed
lines show a linear function, for reference. Note that axes are logarithmic. The fourth column shows the empirical distribution of selection coefficients of fixed
mutations; dashed lines show the best-fit regression on the semi-log scale, with slope k (only selection coefficients > 0.5 were used for fitting). Parameter
values: N = 1000; µ = 10−5; L = 1000; number of replicate simulations = 104; a = 1 for the HOC and the NEPI landscapes, and a = 0.42 for the STH landscape.

where the dot denotes a derivative with respect to time;

q(x) =
∫ ∞

0
πx(y)Φx(y) dy [3]

is the expected fixation probability of a mutation arising in a
population with fitness x; and

r(x) =
∫ ∞

0
(y − x)πx(y)Φx(y) dy [4]

is the expected fitness increment of such a mutation, weighted
by its fixation probability. Eqs. 1 and 2 were derived under the
infinite-sites assumption, i.e. each genotype was assumed to have
an infinite number of neighbors, so that even very fit genotypes
have a nonzero chance of discovering a beneficial mutation. Con-
sistent with previous work (37), the infinite-sites approximation
is highly accurate, as we demonstrate by comparing (Fig. 1) the
solutions of these equations (Table 1) to simulations of a finite-site
model (see Materials and Methods).

Fig. 1 shows the dynamics of adaptation on the three classical
fitness landscapes. On the HOC landscape, both the expected fit-
ness of the population and the expected number of substitutions
grow logarithmically with time, consistent with previous work (4).
As we expected, the rate of adaptation on such landscapes rapidly
declines as the fitness of the population grows. As the popula-
tion adapts, there are two forces on the HOC landscape that act
against further adaptation. First, the fraction of mutations that
are beneficial decreases. Second, the probability of fixation of an
adaptive mutation decreases as well. This decrease occurs because
the fixation probability monotonically depends on its selection
coefficient, and the selection coefficients of available adaptive
mutations decline as the fitness of the parent increases. In addi-
tion, adaptation slows down further because the time to fixation
of beneficial mutations grows with declining selection coefficients.
However, this effect turns out to be negligible (see the compari-
son with the full WF model below). The rate of adaptation on the
NEPI landscape also slows down as the fitness increases, but it
does so less dramatically than on the HOC landscape. This behav-
ior is expected because the fraction of beneficial mutations and
their effects do not change as the fitness of the parental geno-
types increases. However, the selection coefficients of beneficial
mutations decrease, thereby reducing the rate of fitness growth.
Finally, on the STH landscape, the rate of mean-fitness increase
grows without bound over time, as expected. In contrast to HOC
and NEPI landscapes, there are no forces on such landscapes

that impede further adaptation as the population becomes more
adapted (hence the name “stairway to heaven”).

In order to investigate the robustness of the results in Fig. 1 with
respect to the assumption of weak mutation, we have simulated
the full stochastic WF model over a wide range of mutation rates.
These simulations incorporate the effects of competing mutations,
and they also account for the (nonzero) time to fixation. Our theo-
retical prediction matches the dynamics of the full WF model very
well when θ ! 0.1. Moreover, even when θ > 1, the concavities of
fitness and substitution trajectories are correctly predicted by our
theory (see SI Appendix).

Distribution of Selection Coefficients of Fixed Mutations. In
addition to fitness and substitution trajectories, we have inves-
tigated the distribution of selection coefficients for mutations that
fix during adaptation (Fig. 1, fourth column). By using computer
simulations, Orr previously showed that this distribution is approx-
imately exponential (excluding small selection coefficients) for
uncorrelated landscapes whose NFD belongs to the Gumbel type
(8). Fig. 1 shows that Orr’s observation holds more generally—
i.e. even for correlated landscapes, such as the NEPI and STH
landscapes. In fact, the distribution of fixed selection coefficients
is so robust to changes in the landscape structure that virtually no
inference can be made on its basis. To demonstrate this problem,
we have chosen the parameter a (see Table 1) so that the resulting
distributions of fixed selection coefficients are virtually the same
for all three classical fitness landscapes, even though their qualita-
tive trajectories are completely different (Fig. 1). In other words,
the selection coefficients associated with mutations that are fixed
during evolution tell us very little about the long-term behavior
of an adapting population or the fitness landscape on which it is
evolving.

Toward a Classification of Landscapes. The space of all possible fit-
ness landscapes is vast. We therefore wish to classify landscapes in
terms of the qualitative evolutionary dynamics they produce—i.e.
in terms of their fitness and substitution trajectories, which can
be directly observed in an experiment. Our analytic approxima-
tion in Eqs. 1 and 2 captures the behavior of the trajectories quite
well, especially as the population reaches high fitnesses (Fig. 1).
Remarkably, these equations depend on only two simple functions
of the landscape: the expected fixation probability of a muta-
tion arising in a population of fitness x, q(x), and the expected
fitness increment of such a mutation weighted by its fixation prob-
ability, r(x). By varying just these two quantities, we can explore
all possible qualitative behaviors of the fitness and substitution
trajectories.

Kryazhimskiy et al. Early Edition 3 of 6
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Fig. 2. Classification of fitness landscapes. Column 1 shows five possible shapes for the r-function, and three possible shapes for the q-function. In some
cases, these functions have asymptotes, shown as dashed horizontal lines. Columns 2–6 show the fitness (Upper) and substitution (Lower) trajectories for the
15 landscapes that arise through combinations of r- and q-functions. Substitution trajectories for landscapes with q-function of type A, B, and C are shown
in green, dark orange, and purple, respectively. In some cases, the fitness or substitution trajectories possess asymptotic slopes, shown as dashed lines in
the corresponding color. In these cases, the asymptotic slope equals the asymptotic value of the corresponding r- or q-function (except for the substitution
trajectories in case V). Landscapes V-B and V-C both have asymptotically linear substitution trajectories, and therefore fall into the same class.

For the purpose of classification, we consider only landscapes
that are defined on the whole positive real axis, and whose r- and q-
functions are monotonic and smooth. The five different shapes of
the r-function and three different shapes of the q-function deter-
mine, respectively, five qualitatively different fitness trajectories
and three qualitatively different substitution trajectories (Fig. 2).
Landscapes with an increasing or decreasing r-function produce
convex (type I and II) or concave (types III, IV, and V) fitness tra-
jectories, respectively. More specifically, fitness trajectories grow
superlinearly with time (type I), are asymptotically linear (type II
and III), grow sublinearly (type IV), or asymptote to a constant
(type V). Similarly, landscapes with an increasing or decreas-
ing q-function produce convex (type A) or concave (types B and
C) substitution trajectories, respectively. Substitution trajectories
grow asymptotically linearly (type A and B), or sublinearly (type
C). Considering all possible combinations of the r- and q-functions
produces a total of 14 classes of qualitatively different evolutionary
dynamics (Fig. 2).

This classification scheme accommodates the three classical
landscapes considered above. The STH landscapes belong to class
I-A or I-B, because q(x) is constant and r(x) grows without bound.
The NEPI landscapes belong to class IV-C, because both r(x)
and q(x) decay as x−1. The HOC landscapes belong to class V-
C because r(x) is negative for large x and q(x) decays to zero.
Recall that the STH landscapes are synergistically epistatic and
the HOC landscapes are antagonistically epistatic. This observa-
tion suggests the following natural definition: landscapes for which
the r-function either grows or decays slower than x−1 are synergis-
tically epistatic (types I, II, III, and IV), whereas landscapes for
which the r-function decays faster than x−1 are antagonistically
epistatic (types IV and V).

Remarkably, the substitution trajectories for landscapes of type
IV or V are almost linear—a pattern long considered the hallmark
of neutral or nearly neutral evolution (38). As these correlated
landscapes demonstrate, this pattern can also arise when substi-
tutions confer significant fitness gains. In fact, the linear accrual
of adaptive mutations has recently been observed in experimental
populations (53).

Inferring Landscape Structure From Data. Which fitness landscapes
are compatible with empirical data, and which are not? To address
this question, we have compared predicted evolutionary dynam-
ics with data from long-term evolution experiments. Empirical
fitness trajectories in a fixed environment typically have negative
curvature: Fitness increases quickly at the early stages of adap-
tation, and more slowly at later stages (10, 21, 22, 39–42). This
negative curvature implies that the r-functions for landscapes in
nature belong to type III, IV or V. In other words, a large class
of strongly synergistic landscapes (those with an increasing r-
function) are incompatible with basic, empirical observations. The
space of unrealistic fitness landscapes includes the widely used
STH landscapes (30, 31, 33–35, 43–45), for which r(x) ∼ x.

Landscapes with either antagonistic epistasis (r(x) < Cx−1) or
weak synergistic epistasis (Cx−1 < r(x) ≤ C) produce fitness tra-
jectories that are concave, and so they are qualitatively consistent
with data from microbial evolution experiments. We can use such
data to estimate the sign and strength of epistasis. In order to do so,
we assume that the r-function has the form r(x) = Bxβ with B > 0
and β ≤ 0. This form is convenient because it includes nonepista-
tic landscapes when β = −1, weakly synergistic landscapes when
−1 < β ≤ 0, and antagonistic landscapes when β < −1. Eq. 1 can
then be solved analytically, and the fitness trajectory is given by

F(t) =
(
x1−β

0 + B(1 − β)t
) 1

1−β . [5]

It follows from this expression that the slope of the line fitted on
the log–log scale to the fitness trajectory observed in a long-term
evolution experiment provides an estimate of (1−β)−1. We applied
this procedure to data from the evolutionary experiment by Lenski
et al. (21) and found that β̂ = −9.58 with the 95% confidence inter-
val [−13.36, −7.38], suggesting that the fitness landscape of E. coli
is, on average, strongly antagonistically epistatic. This qualitative
conclusion is robust with respect to the violation of the weak muta-
tion assumption (see SI Appendix), although the precise estimate
of β may change with the development of more refined models of
E. coli evolution.

Discussion
The framework developed here addresses two key problems in the
theory of adaptation: how to characterize evolution on a correlated
fitness landscape and how to infer properties of a fitness landscape
from empirical data. Our analysis has relied on two assumptions:
weak mutation and the fitness parametrization of the landscape.
The assumption of weak mutation, although restrictive, has been
used in previous literature and provides a reasonable starting
point for future research. Relaxing this assumption presents sub-
stantial mathematical complications and introduces entirely new
phenomena, such as clonal interference (30, 35) and “piggyback-
ing” (31, 36). Therefore, we must first have a solid understanding
of adaptation dynamics under weak mutation before proceeding
to incorporate these additional effects. Without a theory of weak
mutation, we would be unable to disentangle the effects of the
fitness landscape itself from the effects of clonal interference. In
the future, experiments whose primary goal is to probe the fitness
landscape should be designed to minimize the effects of clonal
interference, e.g. by choosing small population sizes.

The fitness parametrization is a less-restrictive assumption,
especially when weak mutation is already assumed. Indeed, neu-
tral networks are important for adaptation only when a population
can use them to quickly access previously inaccessible beneficial
mutations. This regime only occurs when the population is poly-
morphic, i.e. when θ > 1. In contrast, a monomorphic population

4 of 6 www.pnas.org / cgi / doi / 10.1073 / pnas.0905497106 Kryazhimskiy et al.

http://www.pnas.org/cgi/data/0905497106/DCSupplemental/Appendix_PDF


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EV
O

LU
TI

O
N

A
PP

LI
ED

M
AT

HE
M

AT
IC

S

can explore the neutral network only very slowly, by substitut-
ing neutral mutations (26). Such a population is far more likely
to substitute a beneficial mutation and jump to a new neutral
network.

We have studied several quantities that characterize evolution-
ary dynamics. We found that the distribution of selection coef-
ficients of fixed mutations is insensitive to the underlying NFD,
consistent with previous findings (8, 46, 47). In contrast, the fit-
ness and substitution trajectories are very informative about the
underlying fitness landscape. In particular, the substitution tra-
jectory is convex or concave on landscapes for which the fixation
probability of a mutation increases or decreases with increasing
fitness, respectively. Similarly, the fitness trajectory is convex or
concave on landscapes for which the expected fitness increment
of a mutation increases or decreases with increasing fitness. More-
over, the curvature of the fitness trajectory is informative about
the sign and strength of epistasis in the fitness landscape.

These results provide a groundwork for inferring fitness land-
scapes from dynamic data. In particular, we have shown that
data from bacterial evolution experiments are incompatible
with landscapes that feature a constant distribution of selection
coefficients—even though such landscapes are often used in the
theoretical literature. We have also proposed a simple method
for inferring the sign and strength of epistasis from such data. In
contrast to most other estimates of epistasis that are based on mea-
surements of interactions among deleterious mutations (see e.g.
ref. 48 and references therein), we provide an estimate of epista-
sis based on the interaction among beneficial mutations—which is
more informative for the long-term dynamics of adaptation. Our
estimates suggest that the E. coli fitness landscape is character-
ized by strong antagonistic epistasis, at least in a fixed laboratory
environment, which is consistent with one previous study (49).
However, the precise type of landscape (e.g. type IV versus type V)
for E. coli or other microorganisms may be difficult to determine
on the basis of fitness and substitution trajectories alone. The
ensemble variance in trajectories across experimental replicates
may provide additional power (see SI Appendix).

Here we have focused on static fitness landscapes, which proba-
bly arise only in laboratory environments. Fitness landscapes in the
field are likely dynamic because of fluctuations in the environment
or frequency-dependent selection. We can hope to understand the
evolutionary dynamics on such landscapes only after we acquire
a firm understanding of static landscapes. Our elementary the-
ory provides an explicit link between the form of static fitness
landscapes and their resulting evolutionary dynamics, in terms of
simple observable quantities. Hopefully, this link will help bring
together theoretical and experimental studies of adaptation.

Materials and Methods
We consider an asexual population of fixed size N that evolves accord-
ing to the infinite-sites WF model (50) with a small mutation rate, so that
θ ( (4 log N)−1, where θ = Nµ and µ is the per-locus, per-generation muta-
tion rate. This condition ensures that the absorption time of all mutations,

including neutral ones, is much shorter than the waiting time until the arrival
of the next mutation. Therefore, the population is monomorphic at virtually
all times, and occasionally it transitions almost instantaneously to a new type
(17). Individuals and the population as a whole are characterized by their
fitness, x. Φx (y)dy denotes the fitness-parametrized landscape, i.e. the prob-
ability that the mutation arising in an individual with fitness x has fitness
y . We assume that genome length is sufficiently large so that each mutation
occurs at a new site. A mutation fixes in the population with Kimura’s fixation
probability πx (y) = (1 − e−2sx (y))/(1 − e−2Nsx (y)) where sx (y) = y/x − 1 is the
selection coefficient (50). If a mutation arises and fixes, then the population
instantaneously transitions from fitness x to fitness y—we ignore the time it
takes for a mutation to fix. We can thus describe the sequence of such transi-
tions by a stationary continuous-time Markov chain, whose state space is the
semi axis [0, +∞). The population waits θ−1 generations for the next muta-
tion on average. If we measure time by the expected number of mutations,
the probability that the population has fitness in [y , y + dy] at time t + δt,
given it had fitness x at time t, is Φx (y)πx (y)dyδt.

We define the fitness and substitution trajectories as F(t, x) =∫ ∞
0 yP(y , t|x)dy , and S(t, x) = ∑∞

i=0 iPi(t|x), respectively, where P(y , t|x) is the
probability that the population has fitness in [y , y + δy] at time t, given initial
fitness x, and Pi(t|x) is the probability that the population has accumulated
i substitutions by time t, given initial fitness x [for simplicity we also write
F(t) and S(t)]. It follows from the classical Markov chain theory that F and S
satisfy the equations (see SI Appendix)

∂F
∂t

(t, x) = (K̂bF(t, ·))(x), F(0, x) = x, [6]

∂S
∂t

(t, x) = (K̂bS(t, ·))(x) + q(x), S(0, x) = 0, [7]

where K̂b is defined by

(K̂bf (·))(x) =
∫ ∞

0
Φx (ξ)πx (ξ)(f (ξ) − f (x))dξ, [8]

which is the backward Kolmogorov operator. In the SI Appendix, we present
an efficient numerical method for finding the whole distributions P(y , t|x)
and Pi(t|x).

On landscapes for which mutations of large effect become increasingly
unlikely as the fitness of the population increases, most of the contribu-
tion to the integral in Eq. 8 comes from values ξ ≈ x, and we can write
f (ξ) − f (x) ≈ f ′(x)(ξ − x). Consequently, (K̂bf (·))(x) ≈ r(x)f ′(x), where
r(x) is given by Eq. 4. Therefore, Eqs. 6 and 7 can be approximated by so-
called advection equations that turn out to be equivalent to Eqs. 1 and 2
(see SI Appendix for details). Eqs. 1 and 2 are closely related to those
derived by Tachida (51) and Welch and Waxman (37) for the uncorrelated
landscape.

In stochastic simulations, we implement a finite-site version of the model
described above. In these simulations, after a substitution has occurred, a
sample of size L = 1, 000 is drawn from the distribution Φx , which represents
the (finite) mutational neighborhood of the current genotype. Each of these
L-neighboring genotypes has the same probability to be drawn at a subse-
quent mutation event. Our results do not depend on the value of L on the
time scales examined as long as L is large (e.g. L ≥ 103). Code written in the
Objective Caml language is available upon request.
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