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The visual system is challenged with extracting and representing
behaviorally relevant information contained in natural inputs of
great complexity and detail. This task begins in the sensory periph-
ery: retinal receptive fields and circuits are matched to the first and
second-order statistical structure of natural inputs. This matching
enables the retina to remove stimulus components that are predict-
able (and therefore uninformative), and primarily transmit what is
unpredictable (and therefore informative). Here we show that this
design principle applies to more complex aspects of natural scenes,
and to central visual processing. We do this by classifying high-
order statistics of natural scenes according to whether they are
uninformative vs. informative. We find that the uninformative
ones are perceptually nonsalient, while the informative ones are
highly salient, and correspond to previously identified perceptual
mechanisms whose neural basis is likely central. Our results
suggest that the principle of efficient coding not only accounts
for filtering operations in the sensory periphery, but also shapes
subsequent stages of sensory processing that are sensitive to
high-order image statistics.

natural scene statistics ∣ psychophysics ∣ vision

Many aspects of early visual processing appear to be shaped
by a necessity for efficient representation of the informa-

tion in natural stimuli. Examples include: (i) the center-surround
receptive field of the retinal ganglion cell, which removes spatial
correlations in natural images and decreases retinal redundancy
(1–3), (ii) the twofold excess of retinal OFF pathways (encoding
negative contrasts) as compared to ON pathways (encoding
positive contrasts), which matches the asymmetric contrast struc-
ture of natural scenes (4), (iii) cone spectral sensitivities and color
opponency in ganglion cells, which maximize chromatic informa-
tion from natural scenes (5–7), (iv) overlaps of ganglion cell
receptive fields within the retinal mosaic, which balance redun-
dancy reduction against signal-to-noise ratio improvement (8, 9),
and (v) the shapes of the nonlinear response functions of early
sensory neurons, and their adaptation to stimulus variance, which
have been related to the skewed intensity distributions that occur
in natural stimuli (10, 11). In all cases, physiological and anato-
mical characteristics of the visual system are accounted for by a
simple efficient coding principle: sensory systems invest their
resources in relation to the expected gain in information (4).

All these examples refer to first-order image statistics (the dis-
tribution of light intensities at single pixels) or simple second-
order image statistics (covariances of light intensities at pairs of
pixels), and to processing within the retina. It is unknown whether
such an explanatory framework extends to more complex image
statistics, or to central visual processing. There are two reasons
for this gap in knowledge. First, higher-order image statistics
are challenging to analyze, because of their complexity and high
dimensionality (12). Second, more is known about the filter-like
properties of visual neurons, than about their sensitivity to high-
er-order features. Yet it is precisely these higher-order features
that underlie the perception of lines, edges, and texture, so char-
acteristic of the natural image ensemble (13).

Local texture in images is determined partly by the distribution
of light intensities and partly by the spatial organization of light
across pixels. Thus, we approach the problem of characterizing
high-order natural image statistics by two complementary dimen-
sionality-reduction approaches. To focus on intensity distribu-
tions, we analyze variations in local intensity histograms that arise
due to spatial correlations of light. To focus on local spatial
organization, we binarize images, and analyze fourth-order
correlations of nearby pixels. We use both approaches to charac-
terize image statistics according to their informativeness about
the local structure of natural images, and we find that this char-
acterization is robust across spatial scales.

Remarkably, in both cases, we find that the distinction between
informative vs. uninformative high-order statistics corresponds
closely to the perceptual sensitivities of the visual system. In the
case of intensity distributions, the three most informative aspects
of histogram statistics of natural images correspond to the three
mechanisms that account for perception of spatially unstructured
(“independent, identically-distributed”) artificial textures, name-
ly,mean, variance, and a quantity known as “blackshot” (14, 15). In
the case of spatial organization, we find that the configurations of
fourth-order correlations that are informative correspond to the
configurations of fourth-order spatial correlations that are visually
salient (16, 17). Moreover, sensitivity to the latter high-order
correlations is known to arise in visual cortex (17–19).

These results suggest that the principle of “efficient coding”
applies not only to the simple image statistics that shape periph-
eral processing, but also to high-order image statistics and to
sensory processing within the central nervous system: cortical
circuits are preferentially selective for image features that are
more informative about the local structure of natural scenes.

Results
The Local Distribution of Light in Natural Scenes. Natural images
have an inhomogeneous (20) and spatially correlated (21) distri-
bution of light which makes pixels of similar intensities more
likely to clump together. The resulting variations in the histo-
grams of light intensity between local image patches contribute
to the perception of texture. The clumping of similar intensities
in local image patches is characterized by conditional distribu-
tions PRðσ1jσ0Þ for intensities σ1 at pixels sampled at a distance
R away from a central pixel of a intensity σ0 (see SI Appendix for
further details).

From a database of natural images discretized to have 16
equally likely intensity levels for each pixel, we sampled the
conditional distributions PRðσ1jσ0Þ, for each possible value of
σ0 and a large range of separations R between 2 and 210 pixels

Author contributions: G.T., J.S.P., J.D.V., and V.B. designed research; G.T., J.S.P., J.D.V., and
V.B. performed research; G.T. and J.S.P. analyzed data; and G.T., J.S.P., J.D.V., and V.B. wrote
the paper.

The authors declare no conflict of interest.

*This Direct Submission article had a prearranged editor.
1To whom correspondence should be addressed. E-mail: gtkacik@sas.upenn.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/
doi:10.1073/pnas.0914916107/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.0914916107 PNAS ∣ October 19, 2010 ∣ vol. 107 ∣ no. 42 ∣ 18149–18154

N
EU

RO
SC

IE
N
CE

PH
YS

IC
S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.0914916107/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.0914916107/-/DCSupplemental/Appendix.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.0914916107/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.0914916107/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.0914916107/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.0914916107/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.0914916107/-/DCSupplemental


(see Materials and Methods, Fig. 1A). Because of spatial correla-
tions, nearby pixels tended to have similar intensities, leading to
peaked shapes for the intensity histograms for small R (Fig. 1B).
At large separations, pixels tended towards statistical indepen-
dence (Fig. 1D) so that the intensity histograms for large R
became increasingly independent of the intensity of the central
pixel. Because we discretized our images to have 16 equally prob-
able intensities, the large R distributions tended towards unifor-
mity. At small separations there is an asymmetry between bright
and dark—dark pixels are more clumped, while bright pixels
appear as small specks within darker areas (Fig. 1B, black vs white
curve). This greater correlation between dark pixels is likely re-
lated to the reported excess of “dark regions” in natural scenes (4).

The Local Statistics of Light Predicts Perceptual Salience. To charac-
terize the variations between the distributions PRðσ1jσ0Þ, we car-
ried out a principal components analysis (PCA) on the mean-
subtracted ensemble of intensity histograms for all values of R
and σ0. The ensemble was sampled uniformly over the 16 possible
intensities σ0 and uniformly in logðRÞ (see Materials and Meth-
ods). We included a range of spatial scales R in the ensemble
because there is no preferred distance from which a scene is
viewed and thus no “typical” size at which to define a local neigh-
borhood. We found that ∼90% of the variance was explained by
just three principal components vj (Fig. 2A). Thus, most of the
variation between intensity histograms of local image patches
is explained by the differences in the strengths of the three
coefficients in PRðσ1jσ0Þ ≈ 1∕16þ∑3

j¼1 c
j
Rðσ0Þvjðσ1Þ, where 1∕16

is the uniform distribution over the 16 intensity levels.
The above analysis shows that the intensity distributions in

natural images are highly stereotyped: ∼90% of their variance
can be accounted for by linear admixtures of three elements,
v1, v2, and v3. Interestingly, previous psychophysical studies with
synthetic textures have shown that human sensitivity to luminance
distributions can also be accounted for by three mechanisms θ1,
θ2, and θ3 (15). Each of these mechanisms reports the projection

of the luminance histogram onto one of three vectors: θ1 projects
onto ðσ1 − 15∕2Þ, and thereby reports the mean intensity; θ2 pro-
jects onto ðσ1 − 15∕2Þ2 and thereby reports the variance; and θ3
(orthogonal to θ1 and θ2) projects onto a vector that is heavily
weighted at low values, thereby reporting the fraction of dark
pixels. The three θi can be linearly combined into the blackshot
mechanism which is useful for discriminating between the darkest
intensities (15) (see SI Appendix).

We therefore asked whether the three components derived
from natural images (the vj) span the same space as the three axes
that define human sensitivity, the θj. Since the principal compo-
nents decomposition into the vj is only unique up to a coordinate
rotation, we asked whether there was a correspondence at the sub-
space level, rather thanwhether each vjmatches the corresponding
θj. Fig. 2B shows that there is such a correspondence. We demon-
strated this result by finding a rotation within the v-subspace that
transformed the vj into another orthonormal set wj, for which w1

closely approximated θ1, w2 closely approximated θ2, and w3 clo-
sely approximated θ3 (Fig. 2B) (closeness assessed by the sum of
squared errors). We tested that a linear combination of the wi can
be selected to closely approximate the blackshotmechanism that is
sensitive to fine gradations between the darkest pixels ((15) and
SI Appendix). The identification of such a transformation is not
at all guaranteed: the space of intensity histograms is 15-dimen-
sional; within this, the vj and the θj span approximately identical
three-dimensional subspaces. Thus, humans are primarily sensi-
tive to intensity histogram variations that match the principal
histogram variations that actually occur in natural scenes. Fig. 2
C–E illustrate these histogram variations.

As controls for robustness, we also applied PCA to PRðσ1jσ0Þ
at each R, and to uniform sampling in R (logarithmic sampling

A B

C D

Fig. 1. Local distributions of light in natural scenes. (A) Natural images are
discretized into 16 equipopulated grayscale levels. Central pixels with inten-
sity σ0 are chosen randomly, and the distribution of intensities σ1 at a radius R
from the center is sampled. The distance R is represented by the scale bar in
pixels. (B), (C), and (D) Histograms of pixel intensities at different distances
from the center (shown here for R ¼ 4; 32; 256) if the central pixel σ0 is black,
gray, or white (black, gray, andwhite lines). Note the difference in histograms
for black vs. white central pixel σ0 for small R (see SI Appendix for Pðσ1Þ as a
function of R).

C D E

Synthetic IID texture pairs with histograms differing in
w1 (mean) w2 (variance) w3 (blackshot)

A BTop eigenvectors vj of PR( | 0) Eigenvectors rotated into wj

w1 ~ mean
w2 ~ variance
w3 ~ blackshot

v1
v2
v3

1

Fig. 2. Variability of local intensity histograms. (A) The three principal com-
ponents of the ensemble of local intensity histograms PRðσ1jσ0Þ (blue, green,
and red), along with the fraction of variance explained by each (bar chart in-
set). Together, the three components explain ∼90% of the variance between
histograms. (B) An orthogonal transformation rotates the three principal
components, fvjg → fwjg, so thatw1 is as close as possible to a linear function
of σ1, andw2 to a quadratic function of σ1 (open blue circles = linear function,
θ1ðσ1Þ; open green circles = quadratic function, θ2ðσ1Þ). The three new axes
fwjg relate to variations in mean, variance, and blackshot of the
intensity histogram. (C), (D), and (E) IID texturepairs. The intensityofeachpixel
is chosen independently according to the inset distributions which vary from
the uniform distribution by adding or subtracting one principal component
wj from B. These additions vary the mean (C), variance (D) or blackshot (E)
of the texture. Only IID textures that vary in at least one of these three ways
can be reliably discriminated by humans (15).
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was used above). These procedures robustly gave the same eigen-
vectors, but the fraction of variance explained by w2 and w3

increased with decreasing R (SI Appendix). We also applied
PCA to the ensemble of single-pixel intensity histograms (margin-
al intensity distributions; PRðσ1Þ) sampled from R × R pixel
patches for all values of R. PCA on this ensemble (directly related
to the experiments in (15)) also gave the same eigenvectors
(SI Appendix). The observation that PCA on PRðσ1Þ agrees with
PCA on PRðσ1jσ0Þ, confirms that the significant variations in
local intensity histograms of natural scenes arise from clumping
due to correlations.

To test the role played by higher-order image statistics in these
results we repeated our analysis in synthetic image ensembles
(SI Appendix) that matched natural images in power spectrum
(21), but not in other respects. This synthetic ensemble required
just two principal components (mean and variance) to explain
more than 90% of variation in the local intensity histogram.
Further, the skew towards dark intensities in the third blackshot
component was absent. This suggests that higher-order correla-
tions in natural scenes play a key role in making blackshot a
perceptually salient image statistic.

In sum, we found a striking statistical regularity in the local
intensity histograms of natural scenes: they can be accounted
for by linear admixtures of three basic kinds of histogram varia-
tions. These three kinds of variations correspond to the three
mechanisms that humans use to discriminate among synthetic
independent, identically distributed (IID) textures (15). That is,
it seems that humans discriminate intensity distribution variations
that are frequent in nature, and are insensitive to the variations
that occur rarely. Our results also suggest that the most common
variations in natural scene patches occur partly because of the
underlying correlations. This idea can be tested by generating
nonIID images which vary only in the conditional pixel distribu-
tions we measured. We predict that humans discriminate such
textures based largely on the three principal components we have
measured in natural images.

Spatial Correlations and Local Textures in Natural Scenes. Textures in
images also arise in part from correlations between many pixels at
the same time. Such cross-correlations are difficult to character-
ize because they proliferate rapidly with the number of pixels.
For example, with just four contiguous pixels there are four
expectation values, six dipole (pair) correlations, four triplets,
and one quadruplet (Fig. 3A). Even assuming that these are trans-
lation invariant, there are ten independent quantities. Moreover,
lower-order correlations (e.g., pairwise) induce higher-order
relations between multiple pixels, making it delicate to extract
intrinsically higher-order structures. Because there are so many
different ways in which multiple pixels can be related it is a
challenge to find useful ways of characterizing higher-order
correlations in natural scenes.

Wedevised amethod for assessing such correlations, inspired by
procedures for generating textures with higher-order correlations
that are used in psychophysical studies (16, 17, 22–26). The gen-
erative approach begins with a “glider” G, consisting of Q
pixels in some geometrical arrangement; Fig. 3B displays eight
such four-pixel gliders, G1;…;G8. We allow each pixel to take
one of L intensity levels. Consider a probability distribution PG
over the LQ intensity assignments over the glider shape (e.g.,
Fig. 3C for a square glider with four binary pixels, i.e., Q ¼ 4,
L ¼ 2, with 24 ¼ 16 possible colorings). It is possible to construct
synthetic textures in which the only correlations are those implied
by the distribution PG (see Materials and Methods and two exam-
ples in Fig. 3B; (25, 26)). “Isodipole textures” generated from
binarized gliders with four pixels containing fourth-order, but
no second- or third-order correlations divide into two groups
(e.g., Fig. 3B)—those in Group 1 are perceptually salient on a

white binary noise background, and those in Group 2 are not
(16–18, 22, 24). (Group 2 corresponds to the Group III of (17).)

We wanted a method of assessing how much of the local struc-
ture in natural scenes is explained by the presence of particular
textures arising from higher-order correlations. We concentrated
on the isodipole textures that have been the focus of psychophy-
sical study. To begin to isolate higher-order correlations, we first
removed the well understood scale invariant second-order corre-
lations (21) by whitening our images, and then binarized pixels at
the median of the image intensity distribution, so that half the pix-
els in each imagewere black and half were white (seeMaterials and
Methods). (The binarization reintroduces a small amount of sec-
ond-order correlation—see SI Appendix.) Then, we treated R × R
pixel blocks of the images as texture patches (Fig. 3D), and accu-

Fig. 3. Spatially correlated textures. (A) Correlations of different orders be-
tween four pixels. There are four mean pixel luminances (pink circles), six
pairwise correlations (blue lines), four triplet correlations (green triangles),
and one quadruplet (fourth-order) correlation (red square); translation in-
variance reduces the number independent quantities to 10 (numbers in par-
enthesis). (B) Examples of gliders and the textures they generate (see
Materials and Methods). Both displayed textures have equally many white
and black pixels, have no second- or third-order correlations, and a large
fourth-order correlation. Gliders from Group 1 generate textures that are
perceptually salient against a white binary noise background, while textures
generated from gliders in Group 2 are not perceptually salient (16, 24). (C) An
example of a distribution over binary patterns in a square glider. This distri-
bution generates synthetic textures that have only fourth-order correlations
(example texture in 3B, left). (D) To measure the fourth-order correlations in
natural scenes we select patches of R × R pixels from whitened natural scenes
binarized to have equally many white and black pixels. Each of the eight gli-
ders in B (a square glider shown here in red) is scanned across a patch, and
the histogram of binary patterns encountered by the glider is accumulated.
(E) Histogram of binary patterns encountered by a square glider scanning a
64 × 64 patch from a natural image. (F) The information about texture in a
64 × 64 binary image patch that is contained in second-, third-, and fourth-
order correlations, extracted with a square glider.
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mulated the histogram of intensities sampled by a given glider
shape as it scannedover such texture patches. Thus, for each image
patch of size R, each glider G yielded a histogram PGð ~σÞ over the
24 ¼ 16 possible ways to assign black or white to each of the four
pixels in a glider. This histogram contained complete information
about first-, second-, third- and fourth-order correlations between
the four pixels of each glider in an image patch (results for a square
glider and a 64 × 64 image patch are in Fig. 3E).

If there were no correlations of any kind between the pixels
in the glider, then PG in a given patch would be uniform and
have a maximal entropy SG ¼ −∑ ~σPGð ~σÞ log2 PGð ~σÞ, of four bits.
Because pixels are not independent, the entropy SG will in gen-
eral be less than four bits; we can write SG ¼ Q −∑Q

ν¼1 I
ðνÞ
G where

Q ¼ 4 is the number of binary pixels in the glider, and IðνÞG mea-
sures the bits of entropy reduction caused by luminance bias
(ν ¼ 1), and by pair (ν ¼ 2), triplet (ν ¼ 3), and quadruplet
(ν ¼ 4) correlations (27).

This decomposition is general and can be used to isolate cor-
relation of arbitrary order in natural scenes. In detail, we start by
building a series of so-called “maximum-entropy” approximations
to the true distribution PG: P

ð1Þ
G ð ~σÞ; Pð2Þ

G ð ~σÞ; Pð3Þ
G ð ~σÞ; Pð4Þ

G ð ~σÞ, such
that PðνÞ

G is as random as possible while reproducing correlations
up to order ν in PG (see SI Appendix). Because our distributions
have four pixels and thus a maximal correlation of fourth-order,
Pð4Þ
G must identically equal the true distribution PG, and the series

terminates. Each of these distributions has its associated entropy,
SðνÞG ¼ −∑ ~σP

ðνÞ
G ð ~σÞ log2 P

ðνÞ
G ð ~σÞ. Following (27), ν-th order correla-

tions within the glider carry IðνÞG ¼ Sðν−1ÞG − SðνÞG bits of information
about local texture. These information-theoretic quantities mea-
sure order in a texture that arises from correlations that involve
exactly ν pixels. In this manner, we can isolate the impact of
fourth-order correlation in natural textures despite the simulta-
neous presence of lower (e.g., second- or third-) order correla-
tions, a characterization that is hard to achieve using the
traditional moment-based correlation measures. An example of
such a decomposition for a square glider sampling a 64 × 64
image patch is given in Fig. 3F.

Nonzero values of IðνÞG indicate that the correlations among
patches of ν pixels could not have been guessed from the correla-
tions among smaller patches, i.e., that the correlations among ν
pixels are informative. In gliders with Q ¼ 4 pixels, the fourth-
order correlation is special, because a single quadruplet
(fσ1;σ2;σ3;σ4g) contributes to it, through a product Πð ~σÞ ¼
σ1σ2σ3σ4 of all four pixels. Since pixels are binary (σ ¼ %1) this
product is %1. Consequently (see SI Appendix) each glider distri-
bution can be uniquely decomposed as

PGð ~σÞ ¼ Pð3Þ
G ð ~σÞ þ ðαð4ÞG ∕16ÞΠð ~σÞ; [1]

where Πð ~σÞ ¼ 1 or −1 if the number of white pixels in the binary
pattern ~σ is even or odd. In our ensemble, jαð4ÞG j and the informa-
tion measure Ið4Þ are related (see SI Appendix). Conceptually, αð4ÞG
measures fourth-order correlation between binary pixels in
a manner similar to a pairwise correlation coefficient. Positive
(negative) αð4ÞG denotes bias towards an even (odd) number of
white pixels in a glider G.

This formalism lays down the foundation for analysis of fourth-
order correlation in natural scenes. Specifically, Ið4ÞG , computed
over many texture patches, will tell us how much fourth-order
correlation there is, on average, between four pixels arranged
in a glider. If Ið4ÞG ¼ 0, then fourth-order correlations are absent
and αð4ÞG must also be 0. If this quantity is significantly different
from 0, the local fourth-order statistics are informative, i.e., they
cannot be computed from lower-order ones. We validated our
formalism by applying it to synthetic textures generated by
specific gliders G (see SI Appendix). For such textures, correla-
tions between pixels arranged according to G were highly infor-

mative, while correlations between pixels arranged according to
other glider geometries were uninformative. Thus our analysis
correctly recovers the structure present in synthetic textures.

The Local Statistics of Correlated Textures Predicts Perceptual
Salience. To test how much information is conveyed about natural
image textures by correlations of different orders, we constructed
the quantities IðνÞG and αð4ÞG for each glider and many R × R image
patches (computational details are given in SI Appendix). Fig. 4A
shows that at all scales, second- and third-order correlations yield
similar amounts of information about image patches seen
through any glider. However, fourth-order correlations in natural
scenes are much more informative when measured in the pixel
arrangements of Group 1 gliders, which are also the ones that
generate perceptually salient textures (16, 17). Correspondingly
(Fig. 4B), αð4ÞG becomes significantly positive for Group 1 gliders,
but not for those of Group 2. The fact that Ið4ÞG is significantly
nonzero and αð4ÞG is significantly positive for Group 1 gliders
but not for those of Group 2 indicates that fourth-order correla-
tions within Group 1 gliders are informative about natural scenes,
while fourth-order correlations within Group 2 gliders can be
inferred from lower-order correlations.

Above, we divided the gliders into groups based on psychophy-
sical studies; next we show that this subdivision emerges from
the image statistics themselves. To carry out this analysis, we com-
pared the full distributions of αð4ÞG over image patches generated
by each glider, using the Jensen-Shannon distance measure
(DJS)†. The Jensen-Shannon distance quantifies how discrimin-
able two distributions are from each other; DJS → 0 for identical
distributions. In our context, DJS assesses differences in fourth-
order correlations in natural scenes seen through the lens of
different gliders G. Thus, we computed DJS for each pair of
the eight gliders in Fig. 3B sampling R × R image patches at three
different scales R (Fig. 4C).

At sufficiently large R (e.g., R ≥ 64 pixels) the eight gliders
naturally cluster into two groups—the Jensen-Shannon distance
is small within each group, and large between the groups. This
clustering shows that, in natural textures, the correlations be-
tween pixel quadruplets differ qualitatively between Group 1
and Group 2 pixel arrangements. This separation into two groups,
one perceptually salient and one not, was just as reported in
perceptual studies ((17); see Fig. 3B). Here we are showing that
the two groups also separate purely on the basis of natural scene
statistics, without any reference to perceptual experiments.
Group 1 gliders “sense” fourth-order correlations in natural
scenes, while Group 2 gliders do not. We have checked that this
separation into groups disappears in scrambled natural images
that lack higher-order structure (see SI Appendix).

In sum, Fig. 4 A–C demonstrate that fourth-order correlations
in natural scenes have a specific qualitative structure—only some
patterns of four pixels are correlated. It is precisely these gliders
(Group 1) for which fourth-order correlations are perceptually
salient (17). In synthetic textures, these fourth-order correlations
can be identified when present at low levels, and within a single
50 ms fixation. In contrast, the Group 2 correlations are only de-
tected when present at high levels, if at all.Moreover, introduction
and removal of Group 1 correlations from synthetic textures elicit
a large visual evoked potential (VEP) (17, 19, 28); no comparable
response is elicited by Group 2 correlations (17). Within Group 1
correlations, “even” configurations elicit a larger VEP than “odd”
configurations; this too appears to correspond to a feature of nat-
ural image statistics—as shown by the positivity of αð4ÞG (Fig. 4B),
natural images contain a bias towards the “even” configurations of
the Group 1 gliders.

†Given distributions p and q, let mðxÞ ¼ ðpðxÞ þ qðxÞÞ∕2. The Jensen-Shannon distance is:
DJS ¼ 0.5∫ dxpðxÞ log2½pðxÞ∕mðxÞ' þ 0.5∫ dxqðxÞ log2 ½qðxÞ∕mðxÞ'. DJS → 0 for identical, and
DJS → 1 for distinct p, q.
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Discussion
The concept of efficient coding is an organizing principle that
accounts for many aspects of retinal processing (how the retina
samples images, its chromatic sensitivity, its filter-like aspects,
and intensity-response functions (1–11)) on the basis of simple
statistics of natural scenes, such as their intensity and chromatic
distributions and covariances. Some receptive field properties of
neurons in primary visual cortex (V1) can also be viewed as
adapted to the statistical structure of natural scenes (29–31).
However, the applicability of the efficient coding hypothesis to
later visual processing, where nonlinear feature extraction occurs,
is as yet unclear. The key step in addressing this question is to
characterize the higher-order statistics of natural images beyond
intensity distributions and covariances. This is a challenging pro-
blem, due to the complexity of natural scenes and the intrinsic
high dimensionality of the required statistics (12).

Our strategy for attacking this problem relies on a method to
determine how much of the local structure in natural scenes is
explained by a particular underlying texture. Traditional methods
of quantifying structure, e.g., correlation coefficients, are not
helpful because they do not quantify how much of local structure
in scenes is explained by a particular kind of texture, and because
they cannot easily disentangle correlations of various orders. We
devised a simple, yet powerful, approach inspired by generative
procedures for producing texture. We accumulated joint distribu-
tions of intensities of pixels arranged in specific geometric
patterns (gliders). We measured how, and how much, these dis-
tributions varied from the random (uniform) distribution, and
whether these distributions could be predicted from first- and
second-order image statistics. We then used these deviations
to characterize the high-order statistics of natural scenes.

The strategy was applied in two ways: one that focused on the
kinds of gray level distributions that are typically present in local
regions of natural scenes (where we used principal components
analysis of intensity distributions), and one that focused on the
kinds of local spatial organization that are present (where we
used four-pixel gliders and a maximum-entropy formalism to
analyze their probability distributions). In both cases we found
that statistical variations that are informative about differences
between natural image patches are precisely those that humans
find salient. Our analysis does not provide a generative model of
why only certain classes of textural variations occur in natural
scenes, or give a causal account of texture discrimination. Never-
theless, it shows a striking correlation between the variations that
occur naturally, and what we are able to perceive. Our results are
robust—variations in sampling, discretization, and processing do
not significantly affect the findings (see SI Appendix).

Our approach revealed regularities in natural scenes that go
beyond the 1∕f spectral distribution (21) and overall light inten-
sity distribution (20). These regularities account for the blackshot
sensitivity function, and for the separation of gliders into those
that do and those that do not generate perceptually salient tex-
ture. It has been previously suggested that blackshot could enable
fine discrimination in shaded regions during otherwise bright
ambient illumination (15), but no quantitative argument for this
has been put forward to date. In the case of fourth-order correla-
tion, simple models based on the intrinsic symmetry, information,
and geometric properties of the gliders likewise failed to explain
perceptual results (17). Our analysis, on the other hand, finds an
explanation for both classes of perceptual sensitivities from the
statistics of natural scenes while developing a general methodol-
ogy for linking complex natural scenes statistics to perceptual
experiments with synthetic images.

The neural processing that underlies the perception of high-or-
der spatial correlations is highly likely to be central. The relevant
evidence is both theoretical and empirical. The theoretical evi-
dence is that these correlations can be perceived even when they
do not affect the first- and second-order statistics of the image, as
shown by several psychophysical studies of isodipole textures (16,
17, 22, 24). Thus, their presence cannot be detected by analysis of
the firing rates ormean-squared firing rates of banks of quasilinear
neurons. The experimental evidence that this processing is central
is that differential responses to such isodipole stimuli are absent in
the lateral geniculate nucleus (19), but present in the cortex in cat
(19), macaque (18), and human (17).

At first sight, our method of analysis seems to show that
absolute amount of information concerning texture that is con-
tained in specific higher-order correlations is quite small (Figs. 3
and 4). Why would the nervous system make selective invest-
ments for such apparently small gains? First, small differences
can add up to a significant advantage, when summed over a large
number of pixels. For example, 0.001 bit per pixel, accumulated
over only a 30 × 30 image patch, yields 1 bit. Second, the actual
textures in natural scenes combine correlations between different
numbers of pixels arranged in many different kinds of patterns.
Thus, correlations of any given type should only be expected to
make a small contribution to the overall deviation from white
noise. Nevertheless, it is precisely the sum of these small effects
that gives rise to a natural image.

We did not attempt to account for sensitivities in vision related
to lifestyles of specific animals, e.g., pathways tuned to the pro-
files of predators (32); we simply sampled exhaustively without
bias across the whole ensemble. Our methods could be refined
to focus on ethologically relevant aspects of images, by selecting
segmented image patches containing visual features of behavioral
interest. Our methods could also be refined to work with multi-
scale wavelet bases or other representations which inherently
recognize that higher-order dependencies between many pixels
are essential to the perception and generation of natural textures
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Fig. 4. Fourth-order correlations and perceptual salience. (A) Decomposi-
tion of textural information into second (blue) , third (green), and fourth
(red) order for the two groups of gliders and many spatial scales
(central line = mean, thin surrounding lines = std across gliders). In large
image patches there is significantly more information about texture in the
correlations between four pixels arranged in the patterns from Group 1
gliders, which also generate perceptually salient textures. Group 1 and Group
2 gliders have similar amounts of Ið2;3Þ. (B) Fourth-order correlations as mea-
sured by the parameter αð4ÞG Eq. 1. Results at each R are averaged across Group
1 gliders (solid, circles) and Group 2 gliders (dashed, squares), and across
many R × R texture patches. The shaded areas show the standard
deviation of αð4ÞG across texture patches for the two groups. As R increases
the correlations within the perceptually salient gliders acquire high statistical
significance. (C) The Jensen-Shannon distance, DJS, between the distributions
of αð4ÞG sampled across many R × R image patches, for all pairs of gliders (ar-
rangements of four pixels, see Fig. 3B). As R increases, the gliders cluster into
two sets, which respectively generate the perceptually salient (Group 1) and
nonsalient (Group 2) textures determined by psychophysical studies (17).
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(33–35). However, even without these refinements, we find a
close correspondence between high-order statistics that are infor-
mative, and those that are visually salient.

Broadly, we identified statistical regularities of natural scenes,
and showed (via comparison with earlier psychophysical experi-
ments with artificial stimuli) that these regularities predicted
the presence (and absence) of mechanisms sensitive to specific
image statistics. We did not seek to account in general for texture
segmentation in natural images. Rather, we used texture segmen-
tation of artificial images as an assay for the kinds of image
statistics to which the visual system is sensitive. To account for
texture discrimination generally, we would have to extend our
analysis to all kinds of image statistics, and also to cue combina-
tion between them, within, and across scales.

Our results provide evidence that among the universe of high-
order statistics that can occur in synthetic images, the visual sys-
tem is selectively sensitive to those that are informative in natural
images. This finding suggests that an organizational principle
recognized as applicable to simple image statistics and the sen-
sory periphery also applies to complex image features and cortical
visual processing: the brain invests resources to selectively extract
those features that are informative about the structure of natural
scenes. This principle predicts that visually salient third-order
correlations, which are yet to measured, will be ones that are most
informative about natural scenes.

Materials and Methods
Image Ensemble. Images were taken with a calibrated Nikon D70 camera, and
comprise panoramic eye-level shots of a dry-season savannah habitat in the
Okavango Delta, Botswana, during typical midday illumination. Trichromatic
(red, green, and blue) images were converted into equivalent luminance
images, by defining the luminance as proportional to the sum of the
computed responses of the L and M cones. For details of calibration and
image access, see ref. 7.

Synthetic Textures. Synthetic textures were constructed from a glider (a spe-
cified geometrical arrangement of pixels, G) and a distribution over “glider
colorings” (pixel intensities within the glider) PGð ~σÞ. Given these data we
selected a Q pixel glider within a texture patch and initialized Q − 1 of its
pixels randomly. We drew the Qth pixel according to the conditional distri-
bution PGðσQjσ1;…;σQ−1Þ. We then shifted the glider and repeated the

procedure for any unassigned pixels within the shifted glider. This procedure
was repeated until all pixels in the image had been assigned intensities (25).
The resulting texture was as random as possible subject to the constraint that
the distribution of intensities in pixels arranged in the shapeGwill be PG (26).

Analysis of Local Luminance Statistics. We selected 17 images with minimal
portions of sky for the analysis (see SI Appendix). Pixels were discretized
to 16 grayscale values (σ0 ¼ 0⋯15) so that the distribution over intensities
for each complete image was uniform. Then, the conditional distribution
PRðσ1jσ0Þ of pixel intensities at radius R away from a randomly chosen central
pixel of intensity σ0 was sampled, for each σ0. The values of R were chosen
uniformly in log2ðRÞ for 18 values of R ranging from R ¼ 21 ¼ 2 to R ¼ 29.5 ¼
724 pixels. For each R, 5·106 pairs of pixels were included in the sample.

PCA of Luminance Distributions. We accumulated PRðσ1jσ0Þ for R and σ0 and
assembled the data into a 16 × 288 matrix (16 intensity levels for σ1;0 at 18
different distances R; also see SI Appendix). To perform PCA, we subtracted
the mean and then computed the covariance matrix of the resulting ensem-
ble of histogram modulators. We diagonalized this matrix to find the eigen-
values and eigenvectors. The eigenvectors with the three largest eigenvalues
are presented in Results. These eigenvectors were robust to variations in the
strategy for sampling luminance distributions (see SI Appendix). The
eigenvectors were also identical to those found by sampling intensities
within (as opposed to at) a radius R of the central pixel.

Image Preprocessing for Isodipole Texture Analysis. Images were whitened by
normalizing every Fourier component to the same magnitude; this flattened
the power spectrum and removed second-order correlations, much like
center-surround filtering in the retina. The resulting image is binarized so
that black and white pixels are equal in number. Second-order correlations
and luminance bias, averaged over the whole image, were thus removed, but
residual correlations remain in local R × R image patches. Our analysis is scale
invariant (checked by block-averaging the images prior to preprocessing—
see SI Appendix).
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