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In retina and in cortical slice the collective response of spiking neur-
al populations is well described by “maximum-entropy” models in
which only pairs of neurons interact. We asked, how should such
interactions be organized to maximize the amount of information
represented in population responses? To this end, we extended the
linear-nonlinear-Poisson model of single neural response to include
pairwise interactions, yielding a stimulus-dependent, pairwise
maximum-entropy model. We found that as we varied the noise
level in single neurons and the distribution of network inputs,
the optimal pairwise interactions smoothly interpolated to achieve
network functions that are usually regarded as discrete—stimulus
decorrelation, error correction, and independent encoding. These
functions reflected a trade-off between efficient consumption of
finite neural bandwidth and the use of redundancy to mitigate
noise. Spontaneous activity in the optimal network reflected
stimulus-induced activity patterns, and single-neuron response
variability overestimated network noise. Our analysis suggests
that rather than having a single coding principle hardwired in their
architecture, networks in the brain should adapt their function to
changing noise and stimulus correlations.
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Populations of sensory neurons encode information about sti-
muli into sequences of action potentials, or spikes (1). Experi-

ments with pairs or small groups of neurons have observed many
different coding strategies (2–6): (i) independence, where each
neuron responds independently to the stimulus, (ii) decorrela-
tion, where neurons interact to give a decorrelated representation
of the stimulus, (iii) error correction, where neurons respond
redundantly, in patterns, to combat noise, and (iv) synergistic
coding, where population activity patterns carry information
unavailable from separate neurons.

How should a network arrange its interactions to best represent
an ensemble of stimuli? Theoretically, there has been controversy
over what is the “correct” design principle for neural population
codes (7–11). On the one hand, neurons have a limited repertoire
of response patterns, and information is maximized by using
each neuron to represent a different aspect of the stimulus. To
achieve this, interactions in a network should be organized to
remove correlations in network inputs and thus create a decorre-
lated network response.On the other hand, neurons are noisy, and
noise is combatted via redundancy, where different patterns
related by noise encode the same stimulus. To achieve this, inter-
actions in a network should be organized to exploit existing cor-
relations in neural inputs to compensate for noise-induced
errors. Such a trade-off betweendecorrelation andnoise reduction
possibly accounts for the organization of several biological infor-
mation processing systems, e.g., the adaptation of center-surround
receptive fields to ambient light intensity (12–14), the structure of
retinal ganglion cell mosaics (15–18), and the genetic regulatory
network in a developing fruit fly (19, 20). In engineered systems,
compression (to decorrelate incoming data stream), followed by
reintroduction of error-correcting redundancy, is an established
way of building efficient codes (21).

Here we study optimal coding by networks of noisy neurons
with an architecture experimentally observed in retina, cortical
culture, and cortical slice—i.e., pairwise functional interactions

between cells that give rise to a joint response distribution resem-
bling the “Ising model” of statistical physics (6, 22–26). We
extended such models to make them stimulus dependent, thus
constructing a simple model of stimulus-driven, pairwise-interact-
ing, noisy, spiking neurons. When the interactions are weak, our
model reduces to a set of conventional linear-nonlinear neurons,
which are conditionally independent given the stimulus. We
asked how internal connectivity within such a network should
be tuned to the statistical structure of inputs, given noise in
the system, in order to maximize represented information.

We found that as noise and stimulus correlations varied, an
optimal pairwise-coupled network should choose continuously
among independent coding, stimulus decorrelation, and redun-
dant error correction, instead of having a single universal coding
principle hardwired in the network architecture. In the high-noise
regime, the resulting optimal codes have a rich structure orga-
nized around “attractor patterns,” reminiscent of memories in
a Hopfield network. The optimal code has the property that
decoding can be achieved by observing a subset of the active neur-
al population. As a corollary, noise measured in responses of
single neurons can significantly overestimate network noise, by
ignoring error-correcting redundancy. Our results suggest that
networks in the brain should adapt their encoding strategies as
stimulus correlations or noise levels change.

Ising Models for Networks of Neurons
In the analysis of experimental data from simultaneously re-
corded neurons, one discretizes spike trains σiðtÞ for
i ¼ 1;…;N neurons into small time bins of duration Δt. Then
σiðtÞ ¼ 1 indicates that the neuron i has fired in time bin t,
and σiðtÞ ¼ −1 indicates silence. To describe network activity,
we must consider the joint probability distribution over N-bit
binary responses of the neurons, P̂ðfσigÞ, over the course of
an experiment. Specifying a general distribution requires an
exponential number of parameters, but for retina, cortical
culture, and cortical slice, P̂ðfσigÞ is well-approximated by the
minimal model that accounts for the observed mean firing rates
and covariances (6, 22–26). This minimal model is a maximum-
entropy distribution (27) and can be written in the Ising form

P̂ðfσigÞ ¼
1

Zðfhi; JijgÞ
exp

!

∑

i

hiσi þ
1

2∑
i;j

Jijσiσj

"
: [1]

Here the hi describe intrinsic biases for neurons to fire, and Jij ¼ Jji
are pairwise interaction terms, describing the effect of neuron i on
neuron j and vice versa.We emphasize that the Jijmodel functional
dependencies, not physical connections. The denominator Z, or
partition function, normalizes the probability distribution. The

Author contributions: G.T., J.S.P., V.B., and E.S. designed research; G.T., J.S.P., V.B., and
E.S. performed research; G.T., J.S.P., V.B., and E.S. analyzed data; and G.T., V.B., and E.S.
wrote the paper.

The authors declare no conflict of interest.

*This Direct Submission article had a prearranged editor.
1V.B. and E.S. contributed equally to this work.
2To whom correspondence should be addressed. E-mail: gtkacik@sas.upenn.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/
doi:10.1073/pnas.1004906107/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1004906107 PNAS ∣ August 10, 2010 ∣ vol. 107 ∣ no. 32 ∣ 14419–14424

N
EU

RO
SC

IE
N
CE

PH
YS

IC
S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1004906107/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1004906107/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1004906107/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1004906107/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1004906107/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1004906107/-/DCSupplemental


model canbe fit to data by finding couplings g ¼ fhi; Jijg, forwhich
the mean firing rates hσii and covariances Cij ¼ hσiσji − hσiihσji
over P̂ðfσigÞ match the measured values (6, 11, 23, 24).

This Ising-like model can be extended to incorporate the
stimulus (s) dependence of neural responses by making the model
parameters depend on s. We considered models where only the
firing biases hi depend on s:

PðfσigjsÞ ¼
exp

n
β
#
∑i

ðh0i þ hiðsÞÞσi þ 1
2
∑i;j

Jijσiσj
$o

Zðfhi; JijgÞ
: [2]

Here h0i is a constant (stimulus-independent) firing bias, and
~hðsÞ≡ fhiðsÞg is a stimulus-dependent firing bias. The parameter
β, which we call “neural reliability,” is reminiscent of the inverse
temperature in statistical physics and reflects the signal-to-noise
ratio in the model (9). Here, noise might arise from ion channel
noise, unreliable synaptic transmission, and influences from
unobserved parts of the network. As β → ∞, neurons become de-
terministic and spike whenever the quantities (hi þ h0i þ∑jJijσj)
are positive and are silent otherwise. As β → 0, neurons are com-
pletely noisy and respond randomly to inputs. Thus, β parame-
trizes the reliability of neurons in the model—larger β leads to
more reliable responses, and lower β leads to less reliable, noisier
responses.

The stimuli s are drawn from a distribution PsðsÞ, which defines
the stimulus ensemble. Our analysis will investigate how Jij should
vary with the statistics of the stimulus ensemble and neural relia-
bility (β) in order to maximize information represented in neural
responses. As such, Jij will not depend on specific stimuli within
an ensemble.

In the absence of pairwise couplings (Jij ¼ 0), the model
describes stimulus-driven neural responses that are conditionally
independent given the stimulus:

PðfσigjsÞ ¼ Z−1
Y

i

exp½βðh0i þ hiðsÞÞσi&; [3]

hσiðsÞi ¼ tanh½βðh0i þ hiðsÞÞ&: [4]

Then, writing the stimulus-dependent drive hðsÞ as a convolution
of a stimulus sequence sðtÞ with a linear filter (e.g., a kernel
obtained using reverse correlation), Eq. 4 describes a conven-
tional linear-nonlinear (LN) model for independent neurons with
saturating nonlinearities given by tanh functions (shaped similarly
to sigmoids). The bias of neurons is controlled by h0i , and the
steepness of the nonlinearity by β. Thus, our model (Eq. 2)
can be regarded as the simplest extension of the classic LN model
of neural response to pairwise interactions.

We will regard a given environment as being characterized by a
stationary stimulus distribution PsðsÞ. In our model, the stimulus
makes its way into neuronal responses via the bias toward firing
hiðsÞ. Thus, for our purposes, a fixed environment can equally
be characterized by the distribution of hi, Phð ~hÞ, implied by
the distribution over s. So we will use the distribution Phð ~hÞ to
characterize the stimulus ensemble from a fixed environment.
The correlations in Phð ~hÞ can arise both from correlations in
the external stimulus (s) as well as inputs shared between neurons
in our network (28). We will show that given such a stimulus
ensemble, and neural reliability characterized by β, information
represented in network responses is maximized when the cou-
plings g ¼ fh0i ; Jijg are appropriately adapted to the stimulus
statistics. In this way, the couplings effectively serve as an “inter-
nal representation” or “memory” of the environment, allowing
the network to adjust its encoding strategy.

Maximizing Represented Information
Let N neurons probabilistically encode information about stimuli
~h in responses fσig distributed as Eq. 2 (see Fig. 1). The amount

of information about ~h encoded in fσig is measured by the mutual
information (29):

Iðfσig; ~hÞ ¼
Z

d ~hPhð ~hÞ
∑

fσig

Pðfσigj ~hÞ log2
Pðfσigj ~hÞ
PðfσigÞ

; [5]

where the conditional distribution of responses Pðfσigj ~hÞ is given
by Eq. 2 and the distribution of responses, PðfσigÞ, is given by
PðfσigÞ ¼ ∫ d ~hPðfσigj ~hÞPhð ~hÞ. This mutual information is an
upper bound to how much downstream layers, receiving binary
words fσig, can learn about the world (1). Because of noise
and ineffective decoding by neural “hardware,” the actual
amount of information used to guide behavior can be smaller,
but not bigger, than Eq. 5.

Eq. 5 is commonly rewritten as a difference between the
entropy of the distribution over all patterns (sometimes called
“output entropy”) and the average entropy of the conditional
distributions (sometimes called the “noise entropy”):

Iðfσig; ~hÞ ¼ S½PðfσigÞ& − hS½Pðfσigj ~hÞ&iPð ~hÞ; [6]

where the entropy of a distribution S½PðxÞ& ¼ −∑xPðxÞ log2 PðxÞ
measures uncertainty about the value of x in bits.

If neurons spiked deterministically (β → ∞), the noise entropy
in Eq. 6 would be zero, and maximizing mutual information be-
tween inputs and outputs would amount to maximizing the output
entropy S½PðfσigÞ&. This special case of information maximization
without noise is equivalent to all-order decorrelation of the
outputs. It has been used for continuous transformations by Lins-
ker (30) and Bell and Sejnowski (31), among others, to describe
independent component analysis (ICA) as a general formulation
for blind source separation and deconvolution. In contrast, here
we examine a scenario where noise in the neural code cannot be
neglected. In this setting, redundancy can serve a useful function
in combating uncertainty due to noise (10). As we will see, infor-
mation-maximizing networks in our scenario use interactions
between neurons to minimize the effects of noise, at the cost
of reducing the output entropy of the population.

Our problem can thus be compactly stated as follows. Given the
distribution of inputs, Phð ~hÞ, and the neural reliability β, find the
parameters g ¼ fh0i ;Jijg such that the mutual information Iðfσig;
~hÞ between the inputs and the binary output words is maximized.

Results
Two Coupled Neurons. We start with the simple case of two neu-
rons, responding to inputs ~h ¼ ðh1;h2Þ drawn from two different
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Fig. 1. Schematic diagram of information transmission by a spiking noisy
neural population. Stimuli are drawn from one of two distributions Phð ~hÞ:
(i) “binary” distributions, where the input to each neuron is one of the
μ ¼ 1;…;K patterns of f'1g, i.e.,hμ

i ¼ '1; (ii) Gaussian distributionswith given
covariance matrices. These hi drive a neural response, parameterized by
g ¼ fh0

i ;Jijg and neural reliability β, in Eq. 2. Positive (negative) couplings be-
tween neurons Jij are schematically represented as green (red) links, with
thickness indicating interaction strength. Each input drawn fromPhð ~hÞ is prob-
abilistically mapped to binary words at the output, fσig, allowing us to define
the mutual information Iðfσig; ~hÞ in Eq. 5 and maximize it with respect to g.
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distributions Phð ~hÞ. The first is the binary distribution, where h1;2
take one of two equally likely discrete values ('1), with a
covariance Covðh1;h2Þ ¼ α (useful when the biological correlate
of the input is the spiking of upstream neurons). In this case
Phð−1; −1Þ ¼ Phð1;1Þ ¼ ð1þ αÞ∕4 and Phð−1;1Þ ¼ Phð1; −1Þ ¼
ð1 − αÞ∕4.

The second is a Gaussian distribution, where inputs take a
continuum of values (useful when the input is a convolution of
a stimulus with a receptive field). In this case, we also take
the means to vanish (hh1i ¼h h2i ¼ 0), unit standard deviations
(σh1 ¼ σh2 ¼ 1), and covariance Covðh1;h2Þ ¼ Covð ~hÞ ¼ α. In
both cases, αmeasures input correlation and ranges from −1 (per-
fectly anticorrelated) to 1 (perfectly correlated). We asked what
interaction strength J between the two neurons (Fig. 2A and
Eq. 2) would maximize information, as the correlation in the
input ensemble (parameterized by α) and the reliability of neu-
rons (parameterized by β) were varied.

For the binary input distribution, the mutual information of
Eq. 5 can be computed exactly as a function J, α, and β (see
SI Appendix), and the optimal coupling J(ðα;βÞ is obtained by
maximizing this quantity for each α and β (Fig. 2B). When β is
small, the optimal coupling takes the same sign as the input
covariance. In this case, interactions between the two neurons
enhance the correlation present in the stimulus. The resulting
redundancy helps counteract loss of information to noise. As
reliability (β) increases, the optimal coupling J( decreases in mag-
nitude as compared to the input strength j ~hj (see Discussion).
This is because, in the absence of noise, a pair of binary neurons
has the capacity to carry complete information about a pair of
binary inputs. Thus, in the noise-free limit the neurons should
act as independent encoders (J( ¼ 0) of binary inputs.

For a Gaussian distribution of inputs, we maximized the mu-
tual information in Eq. 5 numerically (Fig. 2 C and D). For small
β, the optimal coupling J( has the same sign as the input correla-
tion, as in the binary input case, thus enhancing input correlations
and using redundancy to counteract noise. However, for large β,
the optimal coupling has a sign opposite to the input correlation.

Thus the neural output decorrelates its inputs (Fig. 2E). This
occurs because binary neurons do not have the capacity to encode
all the information in continuous inputs. Therefore, in the ab-
sence of noise, the best strategy is to decorrelate inputs to avoid
redundant encoding of information. The crossover in strategies is
at β ∼ 1 and is driven by the balance of output and noise entropies
in Eq. 6, as shown in Fig. S1. In all regimes more information is
conveyed with the optimal coupling (J() than by an independent
(J ¼ 0) network. The information gain produced by this interac-
tion is larger for strongly correlated inputs (Fig. 2F).

For both binary and Gaussian stimulus ensembles, the biases
toward firing (h0i ) in the optimal network adjusted themselves
so that individual neurons were active about half of the time (see
SI Appendix). Adding a constraint on the mean firing rates would
shift the values of h0i in the optimal network, but would leave the
results for the optimal coupling J( qualitatively unchanged.

Thus, information represented by a pair of neurons is maxi-
mized if their interaction is adjusted to implement different func-
tions (independence, decorrelation to remove redundancy, and
averaging to reduce noise) depending on the input distribution
and neural reliability.

Networks of Neurons. We then asked what would be the optimal
interaction network for larger populations of neurons. First, we
considered a network of N neurons responding to an input en-
semble of K equiprobable N-bit binary patterns chosen randomly
from the set of 2N such patterns. For N ≲ 10 it remained possible
to numerically choose couplings h0i and Jij that maximized infor-
mation about the input ensemble represented in network
responses. We found qualitatively similar results to two neurons
responding to a binary stimulus: For unreliable neurons (low β),
the optimal network interactions matched the sign of input cor-
relations, and for reliable neurons (high β), neurons became
independent encoders. Input decorrelation was never an optimal
strategy, and the capacity of the network to yield substantial
improvements in information transmission was greatest when
K ∼N (see SI Appendix). Our results suggest that decorrelation
will never appear as an optimal strategy if the input entropy is less
than or equal to the maximum output entropy.

We then examined the optimal network encoding correlated
Gaussian inputs drawn from a distribution with zero mean and
a fixed covariance matrix. The covariance matrix was chosen at
random from an ensemble of symmetric matrices with exponen-
tially distributed eigenvalues (SI Appendix). As for the case of
binary inputs, we numerically searched the space of g for a choice
maximizing the information for N ¼ 10 neurons and different
values of neural reliability β. As β is changed, the optimal (J()
and uncoupled (J ¼ 0) networks behave very differently. In the
uncoupled case (Fig. 3A), decreasing β increases both the output
and noise entropies monotonically. In the optimal case (Fig. 3B),
the noise entropy can be kept constant and low by the correct
choice of couplings J(, at the expense of losing some output
entropy. The difference of these two entropies is the information,
plotted in Fig. 3C. At low neural reliability β, the total information
transmitted is low, but substantial relative increases (almost
twofold) are possible by the optimal choice of couplings. The
optimal couplings are positively correlated with their inputs, gen-
erating a redundant code to reduce the impact of noise (Fig. 3D).
At high β, the total information transmitted is high, and optimal
couplings yield smaller, but still significant, relative improvements
(∼10%). The couplings in this case are anticorrelated with the
inputs, and the network performs input decorrelation.

For unreliable neurons our results give evidence that the
network uses redundant coding to compensate for errors. But
theoretically there are many different kinds of redundant
error-correcting codes—e.g., codes with checksums vs. codes that
distribute information widely over a population. Thus we sought
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Fig. 2. Information transmission in a network of two neurons. (A) Schematic
of a two-neuron network, fσ1;σ2g, coupled with strength J, receiving corre-
lated binary or Gaussian inputs. α ¼ CovðhÞ ¼ input correlation; CovðσÞ ¼
hσ1σ2i − hσ1ihσ2i ¼ correlation between output spike trains. (B) Optimal J(

as a function of input correlation, CovðhÞ, and neural reliability β for binary
inputs. (C) Optimal J( as a function of input correlation and neural reliability
for Gaussian inputs. (D) J( as a function of input correlation for three values
of reliability (β ¼ 0.5, 1, 2, grayscale) and Gaussian inputs; these are three
horizontal sections through the diagram in C. At high reliability the optimal
J( has an opposite sign to the input correlation; at low reliability it has the
same sign. (E) Output correlation as a function of input correlation and
reliability for Gaussian inputs. At high reliability (β ¼ 2) the network decorr-
elates the inputs. At low reliability (β ¼ 1∕2) the input correlation is
enhanced. (F) Fractional improvement in information transmission in optimal
(J() vs. uncoupled (J ¼ 0) networks.
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to characterize more precisely the structure of our optimal
network codes.

The Structure of the Optimal Code, Ongoing Activity, and the Emer-
gence of Metastable States. How does the optimal network match
its code to the stimulus ensemble? Intuitively, the optimal
network has “learned” something about its inputs by adjusting
the couplings. Without an input, a signature of this learning
should appear in correlated spontaneous network activity. Fig. 4
A and B Top shows the distributions of ongoing, stimulus-free
activity patterns, Pðfσigjh ¼ 0Þ, of the noninteracting network
(J ¼ 0) and those of a network that is optimally matched to
stimuli (J(). While the activity of the J ¼ 0 network is uniform
over all patterns, the ongoing activity of the optimized network
echoes the responses to stimuli.

To make this intuition precise and interpret the structure of the
optimal code, it is useful to carefully examine the coding patterns
in the stimulus-free condition. We find that the ability of the
optimal network to adjust the couplings J(ij to the stimulus ensem-
ble makes certain response patterns a priori much more likely
than others. Specifically, the couplings generate a probability
landscape over response patterns that can be partitioned into
basins of attraction (see SI Appendix). The basins are organized
around patterns with locally maximal likelihood (ML). For these
ML patterns, Gμ ¼ fσigμ, flipping any of the neurons (from spik-
ing to silence or vice versa) results in a less likely pattern. For all

other patterns within the same basin, their neurons can be flipped
such that successively more likely patterns are generated, until
the corresponding ML pattern is reached.

In optimal networks, when no stimulus is applied, the ML
patterns have likelihoods of comparable magnitude, but when
a particular input ~h is chosen, it will bias the prior probability
landscape, making one of these ML patterns the most likely
response (Fig. 4B Bottom). This maps similar stimuli into the
same ML basin, while increasing the separation between
responses coding for very different stimuli. Overall this improves
information transmission. We used the Jensen–Shannon distance
to quantify discriminability of responses in an optimal network,
compared to the uncoupled (J ¼ 0) network, as a function of
neural reliability β (Fig. 4C).* For high reliability, the indepen-
dent and optimized networks had similarly separable responses,
whereas at low reliability, the responses of the optimized network
were much more discriminable from each other.

The appearance of ML patterns is reminiscent of the storage
of memories in dynamical “basins of attraction” for the activity
in a Hopfield network (32) (for a detailed comparison, see
SI Appendix). We therefore considered the hypothesis that in
the optimal network a given stimulus could be encoded not only
by the ML pattern itself, but redundantly by all the patterns with-
in a basin surrounding this ML pattern. Since ML patterns are
local likelihood maxima, the noise alone is unlikely to induce
a spontaneous transition from one basin to the next, making
the basins of attraction potentially useful as stable and reliable
representations of the stimuli.

To check this hypothesis, we quantified how much information
about the stimulus was carried by the identity of the basins
surrounding the ML patterns, as opposed to the detailed activity
patterns of the network (Fig. 5A). To do this, we first mapped each
neural response fσig to its associated basin of attraction
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changes from high (β ¼ 5, bright symbols) to low (β ¼ 1∕5, dark symbols).
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tropy despite a 10-fold variation in neural reliability. Error bars are computed
over 30 replicate optimizations for each β. (C) The information transmitted in
optimal networks (green, right axis) in bits, and the relative increase in infor-
mation with optimal vs. uncoupled networks (black, left axis), as a function of
β. For low reliability β, large relative increases in information are possible with
optimal coupling, but even at high β, where the baseline capacity is higher, the
relative increase of ∼10% is statistically significant. (D) Scatter plot of optimal
couplings J(ij against the correlation in the corresponding inputs, plotted for
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network is implementing redundant coding, whereas for high β, the anticor-
relation indicates that the network is decorrelating the inputs.
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has “learned” the stimulus prior and has memorized it in the couplings J( (see
text). (Bottom)When either the blue or red stimulus is applied, the probability
distribution collapses completely onto one of the two coding patterns that
have a high prior likelihood. The sharp response leads to higher information
transmission. (C) “Discriminability index” (DI) measures the separability of
responses to pairs of inputs in an optimal vs. uncoupled network. To measure
separability of responses to distinct inputs, we first compute the average
Jensen–Shannon (JS) distance between response probabilities, D ¼
hDJS½Pð ~σj ~hiÞjPð ~σj ~hjÞ&iij , across pairs of inputs ~hi;j drawn independently from
Phð ~hÞ. Discriminability index is DI ¼ DðJ(Þ∕DðJ ¼ 0Þ, i.e., the ratio of the
average response distance in optimal vs. uncoupled networks.

*Given distributions p and q, let mðαÞ ¼ ðpðαÞ þ qðαÞÞ∕2. The Jensen–Shannon distance is
DJS ¼ 0.5∫ dαpðαÞ log2½pðαÞ∕mðαÞ& þ 0.5∫ dαqðαÞ log2 ½qðαÞ∕mðαÞ&. DJS ¼ 0 for identical, and
DJS ¼ 1 for distinct p;q.
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indexed by the ML pattern Gμ within it. In effect, this procedure
“compresses” the response of neurons in the network to one
number—the identity of the basin. Then we computed the mutual
information between the identity of the response basins and
the stimulus IðGμ; ~hÞ. We found that at high neural reliability β,
information is carried by the detailed structure of the response pat-
tern, fσig. But when neural reliability β is low, most of the infor-
mation is already carried by the identity of the ML basin to which
the network activity pattern belongs. This is a hallmark of error
correction via the use of redundancy—at low β, all the coding pat-
terns within a given ML basin indeed encode the same stimulus.

While noise in individual neurons will still result in response
variability, at low β the optimal network uses its interactions to
tighten the basin around the ML pattern within which a response
is likely. Thus, noise in individual neural responses should over-
estimate network noise. To test this, we first measured network
noise entropy per neuron: true Snoise∕N ¼ hS½Pðfσigj ~hÞ&iPð ~hÞ∕N,
which quantifies the variability in network responses to given
stimuli. Then we measured apparent noise entropy per neuron:
apparent Snoise∕N ¼ ð∑ihS½Pðσij ~hÞ&iPð ~hÞÞ∕N, which quantifies the
average variability in individual neural responses to given stimuli.
We found that apparent single-neuron noise could greatly over-
estimate network noise (Fig. 5B). Furthermore, as neural relia-
bility β decreased, single-neuron noise entropy increased
monotonically, whereas noise in the optimal network responses
saturated. In contrast, the noise entropy as a fraction of the total
output entropy was similar when measured on the population or
the single-neuron level, regardless of the value of β (Fig. 5C). This
surprising property of the optimal codes would therefore allow
one to obtain an estimate of the coding efficiency of a complete
optimal network from the average of many single-neuron coding
efficiency measurements.

Finally, in an optimal network with unreliable neurons (low β)
most of the network information can be read out by observing just
a subset of the neurons (Fig. 5D). Meanwhile at high β, every
neuron in a network ofN neurons carries roughly 1∕N of the total
information, because in the high β regime the neural output tends
toward independence. In no case did we find an optimal network
with a synergistic code such that observing a subset of neurons
would yield less-than-proportional fraction of the total infor-
mation.

Discussion
Wiring neurons together in a network creates dependencies be-
tween responses and thus effectively reduces the repertoire of joint
activity patterns with which neurons can encode their stimuli. This
reduces the information the network can convey. On the other
hand, connections between neurons can enable a population code

to either mitigate the noisiness of each of the elements or decorr-
elate the network inputs. This would increase the information the
network can convey. Here we studied the functional value of inter-
actions by finding information-maximizing networks of pairwise-
interacting, stimulus-dependent model neurons. We explored the
coding properties of models containing three key features: (i) neu-
rons are spiking (not continuous), (ii) neurons are noisy, and (iii)
neurons can be functionally interacting, and recurrent connections
can also be tuned to achieve optimal information transmission.
We found that the optimal population code interpolates smoothly
between redundant error-correcting codes, independent codes,
and decorrelating codes, depending on the strength of stimulus
correlations andneuronal reliability. In a related vein, other recent
work has shown that efficient coding and discrimination of certain
types of stimulus distributions favor nonzero interactions in a
network (33, 34).

If neurons are unreliable (Fig. 6A), the optimal network
“learns” the input distribution and uses this to perform error cor-
rection. This error correction is implemented in a distributed way,
as opposed to using dedicated parity or check-bits that appear in
engineered codes: The network “memorizes” different inputs
using a set of patterns Gμ that maximize the likelihood (ML)
at zero input, PJ( ðfσgj ~h ¼ 0Þ. These ML memories are encoded
in the optimal couplings fh0(i ;J(ijg. There are many such potential
patterns, and the external input breaks the degeneracy among
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Fig. 5. The structure of the optimal code in a network ofN ¼ 10 neurons exposed toGaussian stimuli. (A) Information about the stimulus carried by the identity
of the maximum likelihood basin Gμ (see text), divided by information carried by the full spiking pattern fσig. At low reliability β, most of the information
is contained in the identity of the basin; at high β, each neuron conveys some nonredundant information and the detailed activity pattern is important.
(B) Apparent noise, estimated from single-neuron variability, overestimates noise in network responses. As β decreases (grayscale) single-neuron noise entropy
increasesmonotonically,whereas networknoise entropy saturates. (C) Nevertheless, in optimal networks thenoise entropyas a fractionofoutput entropy canbe
estimated from single-neuronmeasurements. (D) Information carried, on average, by randomly chosen subsets ofM neurons, normalized by information carried
by the whole network of N ¼ 10 neurons, as a function of β. The dashed line shows the case where each neuron carries 1∕N of the total information. At low β,
stimuli can be decoded from a small subset of responses.
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Fig. 6. A schematic representation of the function of optimal networks. (A)
At low reliability (β < 1), optimal couplings J(ij give rise to a likelihood land-
scape of network patterns with multiple basins of attraction. The network
maps different N-dimensional inputs fhig (schematically shown as dots) into
ML patterns Gμ—here, magenta, yellow, and cyan 6-bit words—that serve as
stable representations of stimuli. The stimuli (dots) have been colored accord-
ing to the Gμ that they are mapped to. (B) At high reliability (β > 1), the net-
work decorrelates Gaussian-distributed inputs. The plotted example has two
neurons receiving correlated inputs fh1;h2g, shown as dots. For uncoupled
networks (upper plane), the dashed lines partition the input space into four
quadrants that show thepossible responses of the twoneurons: f−1; − 1g (ma-
genta), f−1;1g (cyan), fþ1;þ 1g (green), and fþ1; − 1g (yellow). The decision
boundaries must be parallel to the coordinate axes, resulting in underutiliza-
tionof yellowand cyan, andoverutilizationofmagentaandgreen. In contrast,
optimally coupled networks (lower plane) rotate the decision axes, so that
similar numbers of inputs are mapped to each quadrant. This increases the
output entropy in Eq. 6 and increases the total information.
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them by favoring one in particular. The information carried
by just the identity of the basin around a ML pattern then
approaches that carried by the microscopic state of the neurons,
IðGμ; ~hÞ ∼ Iðfσig; ~hÞ. This mechanism is similar to one used by
Hopfield networks, although in our case the memories, or
ML patterns, emerge as a consequence of information maximiza-
tion rather than being stored by hand into the coupling matrix
(SI Appendix).

If neurons are reliable (Fig. 6B), the optimal network behavior
and coding depend qualitatively on the distribution of inputs. For
binary inputs, the single units simply become more independent
encoders of information, and the performance of the optimal
network does not differ much from that of the uncoupled net-
work. In contrast, for Gaussian stimuli the optimal network starts
decorrelating the inputs. The transition between the low- and the
high-reliability regime happens close to β ∼ 1.2. This represents
the reliability level at which the spread in optimal couplings (stan-
dard deviation) is similar to the amplitude of the stimulus-depen-
dent biases, hi. Intuitively, this is the transition from a regime,
in which the network is dominated by “internal forces” (low β,
“couplings > inputs”), to a regime dominated by external inputs
(high β, “inputs > couplings”).

Independently of the noise, individually observed neurons in an
optimal network appear to have more variability than expected
from the noise entropy per neuron in the population. Interestingly,
we found that the efficiency of the optimal code, or the ratio of
noise entropy to output entropy, stays approximately constant.
This occurs mainly because the per-neuron output entropy is also
severely overestimated when only single neurons are observed.
Our results also indicate that in an optimal network of size N,
the amount of information about the stimulus can be larger than
proportional to the size M of the observed subnetwork (i.e.,
IM > ðM∕NÞIN). This means that the optimal codes for Ising-like
models are not “combinatorial” in the sense that all output units
need not be seen to decode properly. A full combinatorial code

would be conceivable if the model allowed higher-than-pairwise
couplings J.

All the encoding strategies we found have been observed in
neural systems. Furthermore, as seen for our optimal networks,
spontaneous activity patterns in real neural populations resemble
responses to common stimuli (35, 36). One strategy—synergistic
coding—that has been seen in some experiments (2–5) did not
emerge from our optimization analyses. Perhaps synergy arises
only as an optimal strategy for input statistics that we have not
examined, or perhaps models with only pairwise interactions
cannot access such codes. Alternatively, synergistic codes may
not optimize information transmission—e.g., they are very sus-
ceptible to noise (10).

Our results could be construed as predicting adaptation of con-
nection strengths to stimulus statistics (see, e.g., ref. 37). This pre-
diction could be compared directly to data. To do this, we would
select the hiðsÞ in our model (Eq. 2) as the convolution of stimuli
with the receptive fields of N simultaneously recorded neurons.
Our methods would then predict the optimal connection
strengths Jij for encoding a particular stimulus ensemble. To com-
pare to the actual connection strengths we would instead fit the
model (Eq. 2) directly to the recorded data (38, 39). Comparing
the predicted and measured Jij would provide a test of whether
the network is an optimal, pairwise-interacting encoder for the
given stimulus statistics. Testing the prediction of network adap-
tation would require changing the stimulus correlations and
observing matched changes in the connection strengths.
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