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These are notes for a set of 7 two-hour lectures given at the 2010 Summer School on Quantitative
Evolutionary and Comparative Genomics at OIST, Okinawa, Japan. The emphasis is on under-
standing how biological systems process information. We take a physicist’s approach of looking for
simple phenomenological descriptions that can address the questions of biological function with-
out necessarily modeling all (mostly unknown) microscopic details; the example that is developed
throughout the notes is transcriptional regulation in genetic regulatory networks. We present
tools from information theory and statistical physics that can be used to analyze noisy nonlinear
biological networks, and build generative and predictive models of regulatory processes.
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Introduction

In cell biology, neuroscience, as well as the study of
collective behavior of organisms, networks of interacting
agents or elements orchestrate the cellular, organismal or
group response to the changes in the environment or the
internal conditions of the system. For example, in cells,
signaling proteins on the membrane can detect external
chemicals and respond by chemically modifying other in-
tracellular proteins, leading to a cascade of activity that
can end with up- or down-regulation of the appropri-
ate genes. Similarly, a genetic regulatory network com-
prises a set of regulatory proteins, called transcription
factors, that find and bind special non-coding regions on
the DNA, thus causing a change in the expression levels
of the regulated genes. In the nervous system, signals are
propagated as “digital” action potentials: each neuron in
the human brain receives synaptic input from other neu-
rons and integrates it into its own decision to spike or not.
Finally, flocks of birds, aggregating collections of single-
celled amoeba (Dictyostelium), schools of fish and even
groups of people can exhibit collective behaviors that are
not necessarily trivially understood from the properties
of single group members.
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As physicists, we often see collective behaviors as
emerging from interactions among basic “simple” ele-
ments. Yet in biology, even the building blocks of infor-
mation processing networks are not simple. Proteins can
have many conformational states that are hard to predict
from the amino-acid sequence. The integration of infor-
mation at the enhancer site in metazoan gene regulation
– that is, how levels of regulatory proteins together deter-
mine the expression level of the regulated gene – is still
mostly unknown. And in the nervous system, examples
in which single units change their information-processing
properties through adaptation to sensory statistics or
where the network dynamically modifies its inter-neural
connections as a consequence of learning, have been stud-
ied extensively, but are still poorly understood.

Despite this complexity in network building blocks and
the fact that processes in biological networks can occur
on many (not necessarily well-separated) timescales, we
can still hope to find phenomenological or coarse-grained
descriptions. There is no underlying theory of biologi-
cal networks in the sense known to hard physical science.
But our view is that while they operate and are essen-
tially constrained by basic physics (some of the examples
we will see later), the biological networks are also subject
to evolutionary pressures for function. This is a crucial
distinction in comparison with inanimate systems, and
there is hope that the intuition of a “network X being
driven to perform function Y well” might generate a pre-
dictive theory for biological network X. For example, in
the metabolic pathway of Escherichia coli, the function
that “given the level of nutrients, the bacteria should
maximize the growth rate” can be mathematically for-
mulated and actually leads to verifiable predictions about
the network architecture (Ibarra et al, 2002).

In this Introduction, we motivate the lectures by asking
three questions (Tkačik, 2007):

1. When considering biological networks that process
information, how might one quantify the network
function in a mathematically concise way? Is it
possible to derive network properties by optimizing
for such function, as is the case with metabolic net-
works? Are there general principles that underlie
information processing in living systems?

2. What kinds of measurements can we perform on bi-
ological information processing networks and, hav-
ing these measurements, how can they be analyzed?

3. How is the analysis of such networks different
from the typical analyses of collective behaviors in
physics? Which concepts and tools from physics
can be borrowed to dissect and understand biologi-
cal networks?

We’ll use transcriptional regulation as a concrete ex-
ample to illustrate these questions throughout the lecture
notes. Analogies in neuroscience and other fields will be
commented on.

These notes are organized as follows: Section I pro-
vides an introduction to biological information process-
ing networks by defining the basic terminology and ap-
proaches, and illustrating why these systems are interest-
ing to study; Section II discusses the response properties
of single network elements, e.g. genes or neurons; Sec-
tion III discusses the role, types and origins of noise in
biological networks; Section IV lays the groundwork for
information theoretic approach, defining quantities such
as entropy, mutual- and multi-information, synergy, re-
dundancy etc; Section V illustrates how tools from in-
formation theory can be used to infer models of tran-
scriptional regulation, i.e. transcription factor – DNA
interaction; Section VI proceeds to extend the tools to
analyze simultaneous interactions of more than pairs of
elements in network; and finally, Section VII proposes a
new information-theoretic principle that can perhaps ex-
plain the design of several developmental transcriptional
regulatory networks.

I. BIOLOGICAL INFORMATION PROCESSING
NETWORKS: NOISY NONLINEAR DYNAMICAL
SYSTEMS

The primary source for this section is Ref (Tkačik et
al, 2009), which provides a more complete bibliography
and a review of the study of biological networks.
Let us start by describing several biological networks

and reviewing some of their general properties:
Transcriptional regulatory networks. In their

genomes, organisms contain from several hundred to sev-
eral tens of thousands of genes. The expression levels of
these genes are primarily regulated by a set of proteins
known as transcription factors (TFs), which are encoded
by a few up to about 10% of genes in the genome.
TFs bind specifically to short regulatory sequences of
∼ 10 − 20 nucleotides in length, also known as binding
sites, on the DNA, thereby modifying the expression lev-
els of regulated genes. TFs can cross- and self-regulate,
opening up a possibility of feedback regulation. They
are usually present in nuclei in small, nanomolar range
concentrations (for a nucleus with several µm radius,
these concentrations correspond to several hundred to
thousands of TF molecules per nucleus). The timescales
of such regulation span from minutes to hours. Some
known examples of such regulation are the Lac operon
in Escherichia coli, the λ repressor switch, many exam-
ples in yeast, genes of early development in Drosophila
melanogaster (such as bicoid, hunchback, even skipped),
Hox genes etc.
Signaling networks. “Sensory proteins,” such as

G-protein-coupled receptors, sense various extracellu-
lar molecules. They respond to incident photons, like
rhodopsin, and bind neurotransmitters and environmen-
tal molecules to which we respond by sense of smell. Sim-
ilarly, in bacteria, histidine kinase proteins (one part of
two component signaling systems) are also membrane-
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FIG. 1 A 2 component signaling system used by bacteria to
transduce information from the environment into the cell. A
receptor protein, histidine kinase or HK, is embedded into
the membrane and able to bind ligands (shaded pentagons).
Upon binding, HK undergoes a conformational change and
transfers a phosphate group (P) to a specific diffusable pro-
tein, called a response regulator (RR). An activated form of
this protein, RR∗, can act as a transcription factor and regu-
late target genes (such as gene g in this figure).

bound proteins that detect their specific ligands. Upon
binding their ligands these proteins change confirmation
and cause a chain of phosphorylation / dephosphoryla-
tion reactions that chemically modify their target pro-
teins (e.g. in bacterial two component signaling systems,
the targets are the so-called “response regulator” pro-
teins), thus altering their activity. These proteins can be
present in thousands per cell, and the chemical reactions
are much faster than in the case of transcriptional regula-
tion, with equilibration times on the order of milliseconds
to seconds. The reaction specificity is thought to occur
via molecular ‘lock-and-key’ like recognition mechanisms,
but there exist cases of both unwanted crosstalk and in-
tentional signal integration, where the same molecular
targets are modified by various upstream enzymes.

Neural networks. Neurons transmit signals by prop-
agating stereotyped voltage pulses, or action potentials,
across their membranes (Rieke et al, 1997). These ex-
citations are driven by ionic currents that flow through
special proteins embedded in the membrane, called ion
channels. The speed of propagation along the fibre is
on the order of meters per second, and the timing preci-
sion of spikes can below a millisecond. Most neurons are
all-or-nothing devices: upon receiving input from other
neurons through its dendrites (which can number into
tens of thousands, in the mammalian cortex), a neuron

with some probability either produces a spike and sends
it down its axon, or not. The axon synapses upon thou-
sands of other neuron’s dendrites. The complexity of neu-
ral network processing stems from the fact that synapses
are state- and history-dependent, as their transmission
probabilities can be adjusted on long timescales by chem-
ical modification (this is responsible for learning). Neu-
rons too have complex internal states and exhibit many
interesting computational capabilities, such as nonlinear
input summation, adaptation, resonance properties, and
different regimes of operation dependent on the precisely
controlled ion channel composition.
These networks share a number of common features:

• Biological networks are dynamical systems. The
relevant timescales are the time on which the input
fluctuates, the timescale on which single elements
respond (neural spiking, protein decay rates) and
potentially the timescale on which the network it-
self changes its properties (learning in neural net-
works, change in signaling protein concentrations in
signaling networks). Networks can be (self-)tuned
to special operating points (e.g. dynamical crit-
icality), where new, “emergent” timescales might
appear in the system. The networks often contain
positive or negative feedback loops.

• The wiring in the network is specific. Specificity
can be achieved by spatial organization (neural net-
works, chromosomal organization, metazoan gene
regulation) and selective establishment or death
of connections (neural networks), or by molecular
mechanisms of recognition (TF-DNA interaction,
signaling enzymes).

• The network dynamics is noisy. This is a con-
sequence of the stochasticity in single molecu-
lar events at low concentrations of the relevant
molecules. Neuronal spikes are not completely re-
producible even if the same stimulus is played to
the neuron over and over again, because fluctua-
tions in opening and closing of a finite number of
ion channels in the membrane are not negligible.
The nanomolar concentrations of TFs in the cell
mean that the precise timing when a TF finds and
binds a regulatory site on the DNA is a random
variable which results in stochastic gene activation.
We discuss the importance of noise below.

• The network elements are nonlinear. There are
saturation effects, as in when all enzymes of the sig-
naling pathway are operating at capacity, or a gene
is fully activated. Neurons themselves are excitable
systems, that either don’t respond or respond fully
with a spike. Functionally, nonlinearities enable the
systems to make “decisions” (e.g. by thresholding)
and to re-represent their inputs in nontrivial ways
(e.g. not by simple linear, rotation-like transforma-
tions).
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A. Frameworks for describing biological networks

Various formal levels of description have been used to
analyze biological networks, and different approaches em-
phasize some aspects enumerated above at the expense
of the others:

Topological models discuss networks in terms of
wiring diagrams. The focus is on summarizing experi-
mental data about the patterns of interconnection using a
(possibly directed) graph. In genetic regulation, a partic-
ular kind of arrow in a wiring diagram might imply that
gene A is activating gene B, while another kind might
imply repression. Topological models are concerned with
statistical properties of such graphs, in particular, in how
they differ from various simple models of random graphs.
For instance, global statistical properties, such as node-
degree distributions, clustering coefficients, mean path
lengths etc have been studied for metabolic and regula-
tory networks, and the network of interconnections of all
302 neurons of C elegans1. The advantage of this method
is that reasonably complete regulatory network diagrams
exist, and their properties can be compared to other net-
works, including engineered ones (e.g. transport, internet
routing etc). A parallel line of inquiry has shown that cer-
tain local graph connectivity features, known as motifs,
are overrepresented in, for example, transcriptional reg-
ulatory networks compared to randomized network en-
sembles (Shen-Orr et al, 2002); see Fig. 2. One should
bear in mind, however, that the connectivity graph is a
drastic oversimplification of the true network: without
knowing (i) the kinetic parameters on the arrows, (ii)
how the regulatory arrows converging onto a single node
combine in their effects, and (iii) what are the internal
states of each of the nodes in the regulatory graph (e.g.
often the same node represents both mRNA and its pro-
tein product, both of which have their own dynamics with
delays), one can not predict from the connectivity alone
how the network will behave, although certain classes of
dynamical behavior can be excluded.

Interesting findings pertaining to biological networks
described by connectivity graphs have been: (i) their
scale free degree distribution, with the probability of
a node to be connected to k neighbors being P (k) ∼
k−γ (with γ ∼ 2 − 3) (Barabasi et al, 2004), and the
consequent identification of hub nodes (often essential
proteins); (ii) robustness to breakup of the connected
component with respect to removal of most nodes, but
fragility with respect to removal of hubs; (iii) “small
world” architecture, with short mean path lengths be-
tween pairs of nodes, and high clustering coefficients
(Strogatz, 2001); (iv) hierarchical yet clustered nature
(no preferred size of the cluster, consistent with scale-free

1 Interestingly, the full wiring diagram of all the neurons in a rel-
atively simple animal has not really brought us closer to under-
standing how the functions emerge in this model nervous system.

FIG. 2 Graph representation of simple regulatory networks.
a) Transcription factors c1 and c2 regulate genes g1, g2 and
g3; arrows represent activation, blunted lines represent repres-
sion. c1 activates g1 and g2, while c2 auto-represses itself and
genes g2 and g3. g3 laterally activates g2. b) Feed-forward
loop, one of the motifs found to be overrepresented in the
transcriptional regulatory network of E coli : gene A activates
B which activates C, but A also directly activates C.

property) (Ravasz et al, 2002); (v) “dissociative struc-
ture”, in which hubs are often not connected to each
other (in contrast to social networks, where friends with
lots of friends are often friends among each other).

Boolean models. Here, the network is represented
as a collection of boolean variables {σi}, which can
take “on” (σ = 1) and “off” (σ = 0, sometimes
σ = −1) values, and a set of dynamical update rules,
σi(t + 1) = f(σj(t)), that evolve the system forward in
time in discrete steps. The variables might be thought
of as two-state genes (or neurons), and the update rules
are combinatorial (Boolean) expressions involving input
TFs on the promoters (or dendritic inputs in neurons).
Generalizations to more than 2 states have been used,
e.g. in modeling Drosophila developmental gene network
(Sanchez et al, 2001). This method scales well to simu-
lations of many genes and emphasizes the dynamic and
nonlinear nature of the network, but can introduce se-
rious artifacts due to synchronous update rule. In neu-
roscience, the Hopfield network is of the similar form,
with asynchronous update, and provides a clean theoret-
ical model of associative memory that is able to recall
a stored binary pattern from any closely matching sub-
pattern (Hopfield, 1982). In that case the states of N
neurons are given by {σi}, the update rule is downhill
descent σi ← sgn(

∑
j Jijσj + hi) evaluated under the

network wiring parameters {hi, Jij}, the input pattern is
the initial state of the network {σi}0, and the final state
is the attractor of the dynamics. The memories are K
binary patterns $ξµ, µ = 1 . . .K, stored into Jij by the
prescription Jij = K−1

∑
µ ξ

µ
i ξ

µ
j .

Interesting applications of Boolean network modeling
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include the description of theDrosophila gap-gene system
in which 4 gap genes respond to 3 maternal TF inputs
with spatially varying profiles; this model could describe
correctly the expression patterns in a number of known
mutants (Sanchez et al, 2001). Another interesting case
involved describing the budding yeast cell cycle driven
by a network of 11 interacting nodes (Li et al, 2004).
In this network the topology induces a robust sequence
of state transitions (growth, DNA duplication, pause,
division), triggered by a “cell-size” checkpoint; robust-
ness here refers to the fact that the dynamical trajectory
through the states remains unchanged upon perturba-
tion of update rules, small changes in topology and the
parameters.

Dynamical systems. In the field of dynamical sys-
tems analysis, one usually assumes that each network
element can have a certain degree of “activity” (expres-
sion level for a gene, fraction of activated proteins of a
given type in a signaling network, firing rate of a neuron).
These activities gi are treated as continuous variables un-
dergoing network dynamics. As a simple example one
could write:

dgi
dt

= −1

τ
gi + F




∑

j

Jijgj + Ii



 ; (1)

here, the first term describes relaxation towards equi-
librium with timescale τ , while the second “activation”
term adds up contributions from other network elements
weighted by a connection matrix Jij , and a possible di-
rect input Ii to element i. F is a nonlinear function,
often saturating (or sigmoid). In the case of gene regu-
lation, gi could be the expression level of gene i, τ the
protein decay rate, Jij the contributions of transcription
factor j to the expression of gene i, Ii the direct exter-
nal influence on i by e.g. induction, and F would be
the promotor input/output function, discussed later. Of
course more complex and realistic examples are possible,
potentially including spatial effects due to, for example,
diffusion of TF molecules in the cells. In the study of
dynamical systems one focuses on the search for univer-
sality classes of dynamical behaviors, and looks for limit
cycles and steady states in dynamics and their sensitivity
to network control parameters [such as Jij in Eq (1)].
Well-known applications of this approach involve mod-

eling the chemotaxis module of Escherichia coli (Bray et
al, 1993), a model of cell cycle control in fission yeast (ap-
proximately 10 proteins and 30 rate constants) (Novak et
al, 1997), and the circadian clock in mammals (a system
of about 20 rate equations) that exhibits autonomous
oscillations and reproduces the entrainment of oscilla-
tions through light-induced gene expression (Leloup et
al, 2003). This approach is popular also for modeling of
smaller and simpler (sometimes synthetic) systems, such
as the repressillator (Elowitz et al, 2000) or the Min os-
cillator in bacteria.
Probabilistic models and stochastic dynamics.

Probabilistic models try to capture the noise inherent in

biological processes and experimental protocols. For a set
of (for example) binary variables {σi} that denote the si-
multaneous expression levels of genes (or firing / silence
states of the neurons), one class of probabilistic models
tries to find good approximations for P ({σi}|C), that is,
the probability distribution that all genes (or neurons)
are in a particular configuration {σi} given the external
conditions (or stimulus) C. This is then compared to
experimental data, which is a sample of many measure-
ments of {σi} across cells or time. P ({σi}|C) gives a gen-
erative model from which synthetic data that resembles
real measurements can be drawn. Various approaches
differ in what forms for P are assumed. We will mention
Bayesian network inference and maximum entropy mod-
els in Section VI. A second class of probabilistic models
attempts to generalize dynamical equations, e.g. Eq (1).
If the noise is not too big, the simplest way is to write:

dgi
dt

= −1

τ
gi + F




∑

j

Jijgj + Ii



+ ξi(t); (2)

where 〈ξ(t)ξ(t′)〉 = 2T ({gj})δ(t−t′) is the Langevin noise
strength, i.e. a random force whose variance T might de-
pend on the state of the system (braces denote averaging
over many realizations of the noise time series). Tech-
niques from statistical mechanics and diffusion can then
be used not only to calculate the mean dynamics ḡi(t)
of this system, but also the evolution of the “noise” or
the fluctuation around the mean, characterized by the
covariance matrix of all gi, Cij(t, t′) = 〈δgi(t)δgj(t′)〉.
When concentrations of constituents are low (or when
we are interested in single neural spikes), the continu-
ous description with gi must break down and the state
space is replaced by {ni}, the integer counts of individual
molecules such as DNA or TFs. One switches to describ-
ing the full evolution of the probability distribution using
the Master equation (van Kampen, 2007):

dP ({ni}|t)
dt

= L̂P ({ni}|t), (3)

where L̂ is some linear evolution operator.
Finally, there are techniques like the Stochastic Simu-

lation Algorithm (SSA) of Gillespie (Gillespie, 2007) and
generalizations to spatially extended systems, where the
discrete stochastic dynamics can exactly be simulated at
the expense of slow execution speeds. One of the pioneer-
ing studies with SSA was the simulation of the λ lysis /
lysogeny switch (McAdams et al, 1997), where the simu-
lation tried to reproduce the fraction of lysogenic phages
as a function of multiplicity of infection.

B. A simple regulatory element formulated in different
frameworks

Let’s start by discussing the simplest possible example
of genetic regulation; we will develop this example as we
progress through the lectures.
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FIG. 3 The simplest regulatory graph, where an input tran-
scription factor at concentration c regulates the output ex-
pression level g by binding to a binding site n, which can be
empty or occupied. Since c acts as an activator, an occupied
site results in transcription and translation of g.

Let the transcription factors (TFs) be present at con-
centration c in the cell. On the DNA, there is a single
specific binding site that can be occupied or empty; we’ll
denote this occupancy with n(t). When the site is occu-
pied, the regulated gene will get transcribed into mRNA,
which is later translated into proteins whose count we de-
note by g(t), at the combined rate that we denote by R.
The proteins are degraded with the characteristic time τ .
In this case, our TF thus acts as an activator, see Fig. 3.
Here and afterwards we will refer to the transcription
factor c as an input, and the regulated gene product g as
output.

This model discards a lot of molecular complexity:
there is no explicit treatment of diffusion of TFs, no
non-specific binding, no separate treatment of mRNA
and protein, no chromatin opening / closing etc; in ad-
dition, we group many multi-stage molecular processes
(such as TF binding, RNAP assembly, processive tran-
scription etc) into single steps. Thus, our model is a
gross but tractable oversimplification. As an illustration,
let us formulate it in all of the mathematical frameworks
discussed above.

The topological diagram for this example is simple c →
g. In the case of Boolean network models, the state space
of this network is {c, g} ∈ [0, 1]2, indicating that both
the transcription factor c and the regulated gene g can
be “on” or “off.” The update rules are trivial: c(t+1) =
c(t), g(t+ 1) = c(t).

Treating now concentrations c and g as continuous, we
can describe the same regulatory process by the set of
differential equations:

dn

dt
= k+c(t)(1− n)− k−n (4)

dg

dt
= −1

τ
g +Rn. (5)

Equation (4) is an equation for occupancy n, which is a
number between 0 and 1. Nominally, the site can only
be fully empty or occupied, but in this approximation,
we treat it as a continuous variable that can be inter-
preted as a “probability of the site being bound.” k+c is
the TF-concentration-dependent on-rate, and k− is the
first-order off-rate. Often, it is assumed that there is a
separation of time scales: the first equation for occupancy
equilibrates much faster than τ , meaning that the mean
occupancy

n̄(t) =
k+c(t)

k+c(t) + k−
(6)

can be inserted into Eq (5) to get

dg

dt
= −1

τ
g(t) +R

k+c(t)

k+c(t) + k−
. (7)

In this simple case without feedback, the approach to the
equilibrium at fixed c is exponential with the rate τ , and
the steady state is simple: ḡ = Rτ n̄. Equation (7) has
precisely the form of Eq (1) with F having a sigmoidal
shape. We discuss in the next section how the particular
sigmoidal regulation functions are connected to equilib-
rium statistical mechanics of this system, how noise can
be added by an introduction of the Langevin force into
Eq (5), and why the assumption of fast equilibration of
n strongly influences the noise.
Finally, if we wanted to fully capture the noise in this

model, the object of our inquiry would be Pn(g|t, c): the
time-dependent joint probability of observing g molecules
of the resulting gene and the state of the binding site be-
ing n = 0, 1 (empty, occupied), given some concentration
of the input c. One can marginalize over n to get the
evolution of probability of observing g output molecules:
P (g|t, c) =

∑
n=0,1 Pn(g|t, c). Writing down the Master

equation and for simplicity suppressing the parameters
(c, t) on which all terms P (g|t, c) are conditioned, we find:

dP0(g)

dt
=

g + 1

τ
P0(g + 1) + k−P1(g)− (k+c+

g

τ
)P0(g)

dP1(g)

dt
=

g + 1

τ
P1(g + 1) +RP1(g − 1) + k+cP0(g)−

− (k− +
g

τ
+R)P1(g); (8)

the reader should recognize degradation-related terms
(proportional to 1/τ), the protein production terms (pre-
fixed with R and present only in the case when the gene
is on, i.e. n = 1) and the switching terms of the pro-
moter containing k+c and k−, which couple the n = 0 to
n = 1 states. In this simple case, the equilibrium distri-
bution can be solved by zeroing out the left-hand side of
Eq (8). This yields an infinite dimensional system in g
that can be truncated at some gmax ( Rτ ; we would end
up with a homogenous linear system that can be supple-
mented by a normalization condition

∑
n=0,1

∑gmax

g=0 = 1,
which can be inverted and solved for steady state Pn(g).
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More sophisticated methods are available when the num-
ber of genes grows and they are interacting (Walczak et
al, 2009). Note that in this example we treated the g as
discrete, but c is still a continuous input parameter (not
a variable whose distributions we are also interested in).
Finally, let’s mention the Gillespie algorithm. For this

algorithm we start with enumerating all reactions and
their rates:

k+ : c+ n → cn

k− : cn → c+ n

R : cn → cn+ g

τ−1 : g → ) (9)

One initializes the state of the system as a vector
(c, n, cn, g) of integer counts of molecular species (here
cn denotes a molecular complex of a c molecule bound
to the promoter; there can only be 0 or 1 n and cn, and
you can quickly convince yourself that n = 1−cn). Then
the probability per unit time of each of the 4 reactions is
the product of the rate constant and the number of reac-
tants properly normalized by the relevant volume. The
algorithm randomly draws the next reaction consistent
with the probabilities per unit time, updates the state
of the system and repeats. This algorithm is exact for
well-mixed systems, but (i) can be slow in case there
are fast and slow reactions in the system; (ii) one needs
to sample many simulation runs to accumulate the noise
statistics.

From the presented example it is clear that the fully
stochastic dynamical description can be relatively com-
plicated even for a very simple system. To proceed and
be able to connect to data, we will in these lectures drop
the time dependence and only focus on the steady state,
while emphasizing the nonlinear and noisy nature of the
system. Sections II and III therefore use the Langevin
description to treat noise in a dynamical system, and Sec-
tion VI presents a probabilistic maximum entropy model
of an interacting network. Our assumption to only study
the steady state will preclude us from discussing network
phenomena that are intrinsically dynamic, e.g. the cell
cycle clock, the circadian clock, or the detailed nature
of excitability in neurons and Dictystelium cell cultures.
But for many biologically realistic cases, such as in de-
velopmental biology, or in many experimental settings,
such as measuring the gene response to constant levels of
inducer, the steady state approach is useful.

II. NETWORK BUILDING BLOCKS AS INPUT /
OUTPUT DEVICES

In this lecture we will first explore simple thermody-
namical models of gene regulation, by studying how the
concentration of a transcription factor relates to promo-
tor occupancy and thus to the expression level of the reg-
ulated gene. We will then look at one possible model for
combinatorial regulation and introduce the notion of the

input/output relation. The section finishes by briefly sur-
veying the experimental measurements of input/output
relations.

A. Simple models of regulation: Hill functions

Let’s first revisit our simple description of gene regu-
lation from Eqs (4,5). We found that in steady state the
occupancy of the promoter is n̄(c) = k+c/(k+c + k−),
where k+ and k− are on- and off rates, respectively.
Since this is an equilibrium system, we can ask for the

equivalent statistical mechanics description. Suppose we
have a site n that can be occupied or full. In case it is
occupied, there is a binding energy E favoring the oc-
cupied state, relative to the reference energy 0 in the
unbound state. But in order to occupy the state, one
needs to remove one molecule of TF from the solution.
The chemical potential of TFs, or the free energy cost
of removing a single molecule of TF from the solution,
is µ = kBT log c, where c is the TF concentration, mea-
sured in some dimensionless units of choice. In statisti-
cal physics we can calculate every equilibrium property
of the system if we know how to compute the partition
sum, which is Z =

∑
i e

−β(Ei−µni), where the sum is
taken over all possible states of the system (in our case
binding site empty and binding site occupied), Ei is the
energy of the system is the state i, and ni is the number
of molecules in the system in the state i.
In our case of a single binding site, the partition sum

is over the empty (n = 0) and occupied (n = 1) state:

Z = e−β(E−µ) + 1, (10)

where β = 1/(kBT ), T is the temperature in Kelvin and
kB is the Boltzmann constant. The probability that the
site is occupied is then

P (n = 1) =
1

Z
e−β(E−µ). (11)

Inserting the definition of µ, we get

P (n = 1) =
c

c+Kd
, (12)

where we write Kd = exp(βE). But n̄ = 1 · P (n =
1) + 0 · P (n = 0) = P (n = 1), so by comparing with Eq
(4) we can make the identification

Kd = eβE =
k−
k+

, (13)

which connects our statistical mechanics and dynamical
pictures. Note that k− is measured in units of inverse
time, s−1, k+ is measured in units of s−1 × [conc]−1

(but by convention we here measure concentration in di-
mensionless units, as in µ = kBT log c), so Kd has units
of concentration.
Suppose we make the model somewhat more compli-

cated: let us have two binding sites, which together will
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constitute a system with 4 possible states of occupancy:
both sites empty, either one occupied, and both occupied,
which we’ll write compactly as (00, 01, 10, 11). Let’s also
assume that there is cooperativity in the system – if both
sites are occupied, then there will be an additional favor-
able energetic contribution of ε to the total energy of the
state (11). Finally, when promoters can have multiple
internal states, we need to decide which state is the “ac-
tive” state, when the gene is being transcribed2; here we
pick the state (11) as the active state.

The probability of being active is then

P (11) =
e−2E−ε+2µ

e−2E−ε+2µ + 2e−E+µ + 1
, (14)

where we use the units where β = 1, that is, we express
the energies and chemical potential in thermal units of
kBT . If the cooperativity is strong, i.e. the additional
gain in energy ε is larger than the favorable energy of
putting a molecule of TF out of the solution onto the
binding site, ε + µ−E, we can drop the middle term of
the denominator in Eq (14) and simplify it into:

P (11) =
c2

c2 +K2
d

, (15)

with Kd = exp[β(E+ε/2)], where again we have used the
definition of chemical potential µ. This problem with 2
binding sites and 4 states of occupancy also has a comple-
mentary dynamical picture, which is already quite com-
plicated, see Fig. 4.

Readers used to molecular biology models of gene reg-
ulation will recognize sigmoidal functions in Eqs (4,15),
also known as Hill functions, with a general form (see
Fig. 5):

n̄(c) =
ch

ch +Kh
d

, (16)

where the dissociation constant Kd is interpreted as the
concentration at which the promoter is half induced, and
h is known as the cooperativity or Hill coefficient, usually
interpreted as the “number of binding sites”3. Here we
have shown how such phenomenological curves arise from
simple statistical mechanics models of gene regulation
with cooperative interactions. For repressors, one can
show that n̄(c) = Kh

d /(c
h +Kh

d ).
Before proceeding, let’s inspect more closely the rela-

tion between the dynamical rates and the binding en-
ergy for a single site: k−/k+ = exp(βE). As we have

2 In general, each internal promoter state could have its own tran-
scription rate, but often one state is picked as having the max-
imal transcription rate, and the other states represent the gene
being “off” or expressing at some small, “leaky” rate of gene
expression.

3 In case where there is self-activation of the gene, i.e. gene g can
activate its own transcription in addition to being activated by
the input c, that conclusion is incorrect.

FIG. 4 The transitions in the model with 2 binding sites
and 4 occupancy states, (00, 01, 10, 11). The binding of an
additional molecule of TF happens at a rate k+c, whereas
unbinding rates are state dependent: a singly occupied pro-
moter returns to the non-occupied state with a rate k−, but
the doubly occupied promoter loses a molecule of TF with the
rate κ−. This difference is due to cooperativity, where the
binding of one molecule stabilizes the binding of the other,
and this makes the unbinding rates state dependent. The
“active” state is (11) in the lower right corner. We leave
it as an exercise for the reader to write down the dynami-
cal equations dn00/dt = . . ., dn01/dt = . . . etc, observe that
n00 + n01 + n10 + n11 = 1, and compute the steady state ac-
tivation if cooperativity is strong, n̄11. As in the case of a
single binding site, this expression can be connected to the
thermodynamic result of Eq (14).

shown in Eq (13), this equality is required by detailed
balance if thermodynamic and kinetic pictures are to
match. Molecularly – and we will devote the entire lec-
ture of Section V to this – the energy of binding E in the
case of transcription factor – DNA interaction depends
on the sequence. So if we were to vary the sequence
and binding energy E would change, which of the two
rates, k− or k+ would vary as a result? In general one
cannot answer this question without knowing in detail
the sequence of molecular transitions that happen at the
binding site. However, there is a useful limit, called the
diffusion-limited on rate, that is often applicable. In this
regime, the limit to how quickly the TF can bind is given
by the speed at which it can diffuse to the binding site.
It has been shown that if TF diffuses with diffusion con-
stant D and is trying to bind a site with linear dimension
a, the fastest on rate is k+ ≈ 4πDa, for spherical TF and
binding site4(Berg et al, 1985). In the diffusion-limited
approach, if the binding site is empty, as soon as a TF
diffuses into a region of size a around the binding site, it

4 If assumptions about geometry are relaxed, the prefactor 4π will
change.
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FIG. 5 Three Hill regulatory functions with different slopes
(Hill coefficients h), as in the legend. All functions have Kd =
1. Input TF concentration is customarily plotted on logarith-
mic horizontal axis, while the average promotor occupancy n̄
is on the vertical axis. The output gene expression is in steady
state ḡ = (Rτ)n̄(c), i.e. proportional to occupancy. The slope
of n̄(c) on the log-log plot at half-induction (c = Kd) is related
to the Hill coefficient, d(log n̄)/d(log c)|Kd = h/2.

will immediately bind. Then, all dependence on binding
energy E will be absorbed into the off rate k−. Intuitively
we can understand this by imagining that once the TF is
bound in an energetically favorable configuration, it has
to wait for a random thermal kick of typical size kBT
to unbind, and the probability of that kick being able to
overcome the binding energy barrier E is ∼ exp(E/kBT )
(remember, the more negative the binding energy, the
stronger the binding).

B. Phenomenological models of regulation

In the previous chapter we have shown how thermo-
dynamic and kinetic models are connected for simple
cases of gene regulation where a single transcription fac-
tor binds cooperatively to different numbers of binding
sites. In many cases, however, several transcription fac-
tors together regulate a single gene. How can such situ-
ations be addressed from a theoretical perspective?

Here we briefly discuss three possibilities, their draw-
backs and benefits.

First, if one knows the detailed molecular map of the
states and their transitions, it is possible to write down
the diagram as in Fig. 4 and compute the steady-state
occupancies; alternatively, this can be done in the ther-
modynamic picture if one knows the binding energies and

cooperativities. For simple cases, such as a single acti-
vator and repressor jointly controlling a gene and hav-
ing an energetic interaction, this is feasible and has been
done for, e.g., the lac operon in E coli, as we discuss
later. As we advance towards more and more complex
organisms, however, this approach loses its appeal: for
metazoan enhancers, for instance, we don’t even know
the microscopic states (much less their energies), and so
cannot write down the partition function. While correct,
this approach does not scale to more complex regulatory
strategies well.
Second, we can decide for an ad hoc approach. Here,

we write down a model probability that the gene is on
as a function of its TF concentrations, but do not worry
whether this probability is actually derivable from some
statistical mechanical system, or alternatively, if there
is a realistic dynamical scheme that would generate this
model probability. Often, such approaches borrow the
intuition from simple thermodynamics results and com-
bine them into a more complicated regulatory scheme.
For example, if the gene g is activated by TF A, present
at concentration cA, and repressed by TF B, present at
concentration cB , one could postulate (without deriving)
that the occupancy of the promoter is

n̄(cA, cB) =
chA
A

chA
A +KhA

A

· KhB
B

chB
B +KhB

B

. (17)

This expression assumes that molecules of A bind in-
dependently to hA sites with dissociation constant KA,
and molecules of B bind to hB sites with dissociation
constant KB ; importantly, we also assume that the joint
regulation is and -like, meaning that gene g will only be
activated when both A is bound and B is not bound
[that’s why there is a product in Eq (17)]. More complex
schemes like this can clearly be derived, and while they
will not necessarily correspond to any possible thermo-
dynamic system, they might be useful phenomenological
models that can be fit to the data.
Third, we can pick a real thermodynamic model that

is flexible enough to encompass many possible combina-
torial strategies of gene regulation but will have a small
enough number of parameters to connect to available
data. As in the previous case, this model might not corre-
spond on a molecular level to the events on the promoter,
and would thus also qualify as a phenomenological model.
It would, however, have the advantage of being more eas-
ily interpretable and understandable within the context
of statistical physics. One such model is the so-called
Monod-Wyman-Changeaux model, which we discuss be-
low.

C. A model of combinatorial regulation: MWC model

In this section we’ll discuss a thermodynamic model
that can easily be extended to include combinatorial reg-
ulation. The model has been motivated by the work on
allosteric transitions and was used to explain hemoglobin
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FIG. 6 A schematic diagram of MWC model. Two possi-
ble states of the promoter, “on” and “off”, are separated by
an energy barrier of L̃. There are 3 binding sites for the
transcription factor in this example, to which TFs bind in-
dependently; their binding energy, however, depends on the
state of the promoter. Here, 2 of the 3 sites are occupied, and
are contributing E0,1

A − µ each to the total free energy. If the
promoter is “off,” there is no transcription, if it is “on,” tran-
scription proceeds at rate R and gives rise to Rτ molecules of
output in steady state at full induction.

function (Monod et al, 1965). When applied to the case
of gene regulation, the central idea is that as a whole,
the promoter can be in two states, “on” (1) and “off”
(0). Remember that in our previous examples we had to
declare one of the combinatorial states as the “active”
state; here, this distinction is built into the model by
assumption.

The regulatory region has nA binding sites for tran-
scription factor A. These sites can be bound in both the
active and inactive state, and molecules of A always bind
independently, see Fig. 6. However, the binding energy
for each molecule of A to its binding site is state depen-
dent, i.e. E0

A when the whole promoter is “off” vs E1
A

when it is “on.” Let’s work out the thermodynamics of
this system. For each of the two states, we can write
down the free energies of k molecules of type A bound:

F0 = k(E0
A − µ) + L̃ (18)

F1 = k(E1
A − µ), (19)

where µ = log c (we are writing everything in units of
kBT and dimensionless concentration again), and L̃ is
how favoured the “off” state is against “on” state even
with no TF molecules bound. The partition function is
then

Z =
n∑

k=0

(
n

k

)
e−k(E0

A−µ)+L̃ +
n∑

k=0

(
n

k

)
e−k(E1

A−µ). (20)

Recognizing that the sums are simply binomial expan-
sions5, we get for the probability of the “on” state (pro-

5 Note that
∑n

k=0

(n
k

)
rk = (1 + r)n.

portional to the expression of the gene):

P (on) =
(1 + e−E1

A+µ)n

(1 + e−E1
A+µ)n + (1 + e−E0

A+µ)neL̃
(21)

=
(1 + c/K1

A)
n

(1 + c/K1
A)

n + L(1 + c/K0
A)

n
. (22)

Equation (22) is written in the standard form, with the
identifications K1

A = exp(βE1
A), K0

A = exp(βE0
A) and

L = exp(L̃).
A regulatory impact of transcription factor A onto the

regulated gene is described by quantities (n,K0
A,K

1
A)

in the MWC model. There is one additional param-
eter L, the offset (or “leak”) favoring the “off” state.
Note that the parameters K0,1

A of the MWC model are
not directly comparable to Hill model parameter Kd;
however, we can make the identification in the regime
where c/K0

A + 1 and c/K1
A ( 1 . Then the term

(1+ c/K0
A)

n in Eq (22) can be approximated with 1, and
(1 + c/K1

A)
n ≈ (c/K1

A)
n. Equation (22) then reduces to

P (on) =
cn

cn + L(K1
A)

n
, (23)

and we can identify the parameter n in the MWC model
with the Hill coefficient h, and the dissociation constant
of the Hill model, Kd, with Kd = L1/nK1

A.
In general, for a single gene, the MWC model is not

much different from Hill, producing sigmoidal curves that
don’t necessarily cover the whole range from 0 to 1 in in-
duction as the input changes over a wide range. However,
in the limit where c/K0

A + 1, we can easily generalize
MWC to regulation by several transcription factors. To
see how, rewrite Eq (21) as

P (on) =
1

1 + eF (c)
, (24)

where F (c) = −n log(1 + c/K1
A) + L̃. In this picture,

the binding and unbinding of transcription factors simply
shifts the free energy of “on” vs “off” state. We can
easily see that if K transcription factors µ = A,B, . . .
with concentrations cµ regulate the expression of a gene,
we can retain Eq (24), but write

F ({cµ}) = −
∑

µ

nµ log

(
1 +

cµ
Kµ

)
+ L̃; (25)

it is easy to check that positive nµ represent activating
influences, while flipping the sign of µ makes that gene µ
repress the expression of g (Walczak et al, 2010).

D. Input/output relations and surfaces

These considerations lead to a useful abstraction that
phenomenologically describes the behavior of single ge-
netic regulatory elements, and summarizes how the input
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FIG. 7 A regulatory surface for a gene with two inputs, an
activator A present at concentration cA and a repressor B
with concentration cB . The model is MWC, with L̃ = 5,
nA = 2, nB = −1 (negative since it is a repressor), KA = 0.5
and KB = 0.7.

TF levels get integrated on the promoter into the activ-
ity of the regulated gene. We need to plot the curve
(or surface in case of combinatorial regulation) of gene
activity as a function of all relevant input TF concen-
trations, ḡ = ḡ({cµ}): this is a nonlinear mapping that
combines all inputs into a given output. In simple organ-
isms (prokaryotes), the molecular understanding of these
relations is probably close to correct: the promoter ac-
tivity is just the occupancy of the promoter by the RNA
polymerase and thus is proportional to the rate of mak-
ing new transcripts. For higher organisms, the molecular
picture is likely incorrect. Nevertheless, input/output
surfaces are useful abstractions for thinking about regu-
lation, and concrete models such as MWC can compactly
summarize experimental data.

E. Experiments

Are there quantitiative measurements of input/output
relations in gene regulation?
For systems with a single input and a single output,

it is commonplace to measure such relations and charac-
terize them with Hill-like functions. One example of a
single input, single output function is shown in Fig. 8.
This relation has been obtained in quantitative measure-
ments using immunostaining methods and microscopy
in the fruit fly embryos (Gregor et al, 2007; Tkačik et

FIG. 8 The input/output relation between 2 genes involved in
the early embryonic development in Drosophila melanogaster
(Gregor et al, 2007; Tkačik et al, 2008). On the horizon-
tal axis, the concentration of the input transcription factor
called bicoid, on the vertical axis the expression level of the
target of bicoid regulation, called hunchback. The data has
been normalized so that at full mean induction hunchback
reaches the value 1. Bicoid is expressed in units of its disso-
ciation constant denoted by Bcd1/2: when the concentration
of bicoid is Bcd1/2, hunchback is expressed at half-maximal
levels. Dashed curves show the measurements in different
embryos, and the error bars show the noise in hunchback ex-
pression that we’ll study in the next lecture. As we will see
later, development is a very convenient system for extract-
ing input/output relations because the physiologically rele-
vant range of inputs is naturally laid down in the form of a
spatial gradient across the embryo, and the output hunch-
back level for each input bicoid concentration can be read out
simultaneously under the microscope in a single field of view.

al, 2008); the degree of reproducibility is evident from
the match between measurements on multiple embryos.
This curve can be fit very well by a Hill-like activation,
Eq (16), with the fitted Hill coefficient of 5. The slight
dip at high induction is a consequence of the fact that
in the embryo, hunchback (the output) is regulated by
other transcription factors, not only the input (bicoid)6.
The situation where the factors other than the explicitly
measured input influence the expression level of the tar-
get gene is common in higher organisms – the list of all
inputs is not necessarily even known, and the extracted
input/output relations are of necessity phenomenologi-

6 Hunchback is also thought to self-activate in addition to being
activated by bicoid.
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cal, reflecting the direct influence of the observed input
regulator, but also the indirect influences through unob-
served intermediaries.

Perhaps the best worked out example is that of the lac
operon in Escherichia coli (Jacob et al, 1961), see Fig 9.
The work of Refs (Setty et al, 2003; Kuhlman et al, 2007)
has constructed a thermodynamic model of joint regula-
tion of lac by its two transcription factors, CRP (acti-
vator) and LacR (repressor). In a series of experiments
the concentrations of IPTG (an inducer for LacR) and
cAMP (an inducer for CRP) has been varied and the
2D input/output surface has been mapped out. Mak-
ing this surface consistent with known molecular facts
about the regulatory proteins (such as the cooperativity
of IPTG-LacR interaction) has required an in depth un-
derstanding of the system, including the thermodynamics
of DNA looping and finding other mechanisms that in-
fluenced the intra-cellular concentrations of cAMP (such
as an enzyme called PDE that degrades cAMP). This
body of work demonstrated how thermodynamical mod-
els of regulation, information about relevant molecular
properties of the regulatory proteins, and quantitative
experiments can generate real understanding in a (sim-
ple) biological system. On the other hand, the same work
highlighted practical problems connected with inferring
the input/output relations when input is externally ex-
perimentally controlled: part of the mystery of making
the models consistent with the measurements was the
discrepancy between externally delivered concentrations
of the inducer, and its actual intracellular concentration
(E coli possesses alternative mechanisms that affect these
concentrations). In the end, understanding even a sim-
ple bacterial system such as the lac operon proved quite
challenging. In the case of Drosophila hunchback / bi-
coid regulation, similar problems can be avoided, because
the input (bicoid) gradient is established naturally dur-
ing early morphogenesis, and no experimental (possibly
physiologically irrelevant) interference with the system is
needed.

Finally, in metazoan regulation our knowledge is much
more limited. In enhancer regions that control the ex-
pression levels of genes possibly far away on the DNA,
transcription factor binding sites form clusters and com-
binatorial regulation is abundant. Several kinds of TFs
might bind, each to possibly more than one specific bind-
ing site in the enhancer. These binding sites surprisingly
appear to be less specific (i.e. have shorter recognition
sequence lengths) than in bacteria. Genetic studies have
shown that in constructs in which some of these sites have
been permuted, the biological function is retained, while
other tweaks disrupt the function; it is not clear what
is the appropriate “grammar” that separates viable from
non-functioning binding site configurations. Attempts
are being made, however, to both fit simple thermody-
namical models of regulation to the data in a predictive
fashion (Schroeder et al, 2004; Segal et al, 2008), and
to map out the input/output surfaces of genes involved
in early fruit fly patterning (Fakhouri et al, 2010), when

FIG. 9 A schematic diagram of the lac operon in Escherichia
coli. Genes for utilizing lactose are regulated jointly by the
lac repressor (lacI gene and the associated lacR protein), and
by the CAP (also known as CRP) activator. The bacterium
expresses lactose genes strongly only when lactose is available,
and the preferred sugar, glucose, is not. When glucose is also
available, induction is low, but when lactose is unavailable,
the genes in the operon are completely shut off. Image from
Wikimedia commons.

gap genes respond to spatially varying concentrations of
the morphogens (maternally deposited transcription fac-
tors). These studies have revealed a strong role for ge-
netic cross-repression among the gap genes, as well as
spatial effects in positioning of the binding sites that
might be due to the packing and regulatory role of chro-
matin that can make the genes (in)accessible for expres-
sion.

F. Relation to neuroscience

Neurons, especially in the sensory periphery, can also
be viewed as input/output devices (Rieke et al, 1997). In
the retina, the so-called retinal ganglion cells are sensi-
tive to features in the visual space: each neuron observes
a small visual angle and fires when the spatio-temporal
pattern of light in that visual angle matches the feature
that the neuron is looking for. The output of the neuron
can be viewed as a scalar, the probability of spiking r.
In a typical experimental paradigm, visual stimuli can be
precisely repeated many times and played to the neuron,
so the probability of firing at each point in time, r(t),
is accessible as empirical probability, or firing rate, com-
puted across many aligned stimulus presentation repeats.
The input characterization is more problematic. In

principle, one projects a movie, that is, a set of image
frames of N × N pixels each, refreshed every t0 mil-
liseconds, onto the neuron. Even if the neuron is only
locally sensitive in time, i.e. its spiking at the cur-
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rent moment only depends on T previous movie frames,
the dimensionality of the input space is huge. There-
fore, naively charting out an input/output relation, r =
r(N ×N × T parameters), is infeasible.

It turns out, however, that the features that neurons
look for in this huge dimensional input space are of-
ten simple. The neuron’s sensitivity can be described
by a spatio-temporal linear filter L, local in space and
time, also known as the receptive field. A good model
of the typical sensory neuron is that the neuron first
takes a convolution of the filter with the movie, s(t) =∫
dt′L(t′)∗movie(t−t′). The resultings(t) is now a scalar

that gets mapped through the point-wise (instantaneous)
input/output relation into the spiking rate r(t).

This is the traditional phenomenological model of a
neural response, called the LN (linear-nonlinear) model.
The linear part describes “feature extraction” and re-
duces a stimulus of high-dimensionality to a single scalar
projection. The nonlinear part maps that projection
through a nonlinearity to generate probability of spik-
ing, r(t) = r(s(t)). Some neurons are sensitive to more
than one feature, and thus have, e.g., two linear filters
L1, L2, generating two projections s1, s2 at each instant
in time. The input/output function is then a surface, or
a 2D nonlinearity in neuroscience jargon, r = r(s1, s2). A
large effort in neuroscience is expended on deriving meth-
ods of experimentally probing, and inferring the linear
filters and non-linearities. As an additional complica-
tion, the neural behavior is adaptive, meaning that the
properties of both filters and non-linearities can be dy-
namically tuned on slow timescales to reflect the changes
in the statistics of neural inputs (e.g. the change in the
movie properties, such as average luminosity or contrast).

III. THE INPUT / OUTPUT DEVICES ARE NOISY

A. Encoders, decoders, and noise

Information flow, in biological as well as engineered
networks, is limited due to noise. To gain intuition about
the influence of noise, we consider an information trans-
mission system as a “black box” that takes some input
signal c, transforms (encodes) it and transmits it. The
output signal g is delivered to a readout device – a de-
coder – that then tries to determine which input was
sent. If there were no noise, each input would be uniquely
mapped to some output, and this mapping would be fully
specified by a one-to-one input/output relation ḡ = ḡ(c).

When noise is present, there is no such one-to-one map
in general, and we must take into account the possibility
that given an input symbol c, the system output is not
uniquely determined. Instead, there exists a distribution
over g, P (g|c), that tells us how likely we are to receive
a particular g at the output if the symbol c was trans-
mitted. This distribution is also known as the encoding
distribution. A listener at the output could then use the

FIG. 10 a) The schematic diagram of the channel receiving
inputs c and generating outputs g according to a probabilistic
map P (g|c). The inputs are drawn from P (c); the distribution
of outputs is then fully determined, P (g) =

∑
c P (g|c)P (c).

b) A simple example of the binary channel. The input and
output values can be 0 or 1. If 0 is sent as an input, with
probability 1− ε1 the channel transmits the 0 without a mis-
take, but with probability ε1 the channel corrupts 0 into a 1.
Similarly, ε2 gives the probability of the channel mistakingly
transferring a 1 into a 0.

Bayes’ rule:

P (c|g) = P (g|c)P (c)∑
c P (g|c)P (c)

, (26)

to construct the decoding distribution, that is, an inverse
mapping for the likelihood of each input signal c, given
that g was received. Two things are worthy of note: (i)
the decoding party needs to know P (c), the distribution
of inputs that are being sent (for instance, if c are the
letters of the English alphabet, one needs to know the
letter frequencies in the written language to decode opti-
mally); (ii) P (c|g) is not the final decoding result – the
decoding party does not want a distribution over possible
c that were sent, but instead want the specific c that was
“most likely” sent. Decoding thus requires an additional
rule for choosing the best guess of c from P (c|g), and
there are various optimal choices for this rule, depending
on how and which errors in decoding are penalized. For
example, if c were continuous, we might want to choose
a decoding rule that picks the best guess ĉ out of the
decoding distribution P (c|g), such that the estimated L2
norm between the true transmitted c and decoded ĉ is
minimized, ĉ(g) = argmin

∫
dc (c − ĉ)2P (c|g) (Rieke et

al, 1997).
We return to an in-depth discussion of probabilistic

encoding, decoding, and information transmission in Sec-
tion IV. To proceed, we note that there is a useful sim-
plification at hand in the case when the symbols c and
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g are continuous: suppose that given c, the responses g
are well clustered around some mean response, ḡ(c), but
there is also some “spread” around the mean, charac-
terized by the variance σ2

g(c). The connection between
these two quantities and the fully probabilistic picture is
as follows:

ḡ(c) =

∫
dg gP (g|c), (27)

σ2
g(c) =

∫
dg (g − ḡ)2P (g|c). (28)

These two functions are known as conditional mean and
conditional variance, and they can easily be extracted
from the distribution P (g|c), if it is known. A noise-free
deterministic limit is recovered as σ2

g(c) → 0, in which
case P (g|c) tends to a Dirac-delta distribution, P (g|c) =
δ(g − ḡ(c)).
Unfortunately, the full conditional distribution of re-

sponses given the inputs, P (g|c), is usually only available
in theoretical calculations or simulations, since in reality
we rarely have enough data to sample it. In the case of
gene regulation, sampling would involve changing the in-
put concentration of TF, c, and for each input concentra-
tion, measuring the full distribution of expression levels
g. More often than not we only have enough samples to
measure a few moments of the conditional output dis-
tribution, perhaps the conditional mean and conditional
variance. Given these measurements and P (g|c) that is
experimentally inaccessible directly by sampling, we can
try making the approximation

P (g|c) ≈ G(g; ḡ(c),σ2
g(c)), (29)

that is, we assume that P (g|c) is a Gaussian, with some
input-dependent mean and variance.

In the presented setting, the mean input/output re-
sponse and the noise in the response cleanly separate:
one is given by the conditional mean, and the other by
conditional variance. The noise can be thought of as
the fluctuations in the output variable while the input is
held fixed. Recall that we are discussing all information
processing systems in equilibrium, that is, when the dy-
namics in g has reached steady state (and all variation
in g at given c is due to noise).

With the conditional mean and variance in hand, we
can now create a detailed characterization of a noisy in-
put/output regulatory element by means of two func-
tions, as shown in Fig. 11.

B. Sources of noise

What factors contribute to the noise in the response?
Let us start by briefly considering a purely physical

system first. In the times of analog modems and noisy
telephone lines, the modems’ information rates increased
but started to saturate at about 30kbit/s. This is close
to the theoretical limit predicted by Shannon’s informa-
tion theory (that we introduce in Section IV), given the
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FIG. 11 The input/output relation, showing the mean re-
sponse as well as noise. The input c on the horizontal axis is
mapped into the output g on the right vertical axis through
the input/output relation (thick black line); this summarizes
the mean response, ḡ(c). For each c, there is a distribution
of possible values of g, shown in the inset for c/Kd = 1.
The width of that distribution, σg(c), is the measure of
input-dependent noise, and is plotted as errorbars on the in-
put/output relation. The errorbars themselves can depend on
the input, as shown by the gray line and the corresponding
scale on the left vertical axis.

level of noise and available bandwidth in the transmission
lines. Such noise in electronic devices is well understood.
Two fundamental sources of noise in electronic equipment
that contribute are the Johnson noise and the shot noise.
Johnson noise is due to random thermal fluctuations that
jiggle the charges and thus induce random fluctuations in
voltage (or current flowing through the resistance).
Shot noise is due to quantal nature of charge carriers.

“Current” is a macroscopic (average) quantity, and is a
result of an integer number n of elementary charges q,
flowing through the cable in a time interval T . We can
write the current as the total charge flowing during time
T , i.e. I = nq/T . If we repeated the measurement of du-
ration T several times and were able to count individual
charges, we would see that on average, n̄ charges flow,
but this number has a Poisson fluctuations around the
mean across our repeats of the experiment. A charac-
teristic of a Poisson random process7 is that the mean is

7 Suppose that discrete point events (each of infinitely short du-
ration) occur independently, and that on average we observe n̄
such events in a time window T . The probability of observing
n events in each instance of the time window T is then Poisson
distributed, i.e.

P (n|n̄) =
1

n!
e−n̄n̄n. (30)
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equal to the variance, that is

σ2
n = n̄. (31)

We can then compute the observed fluctuations in the
current: σ2

I = σ2
nq

2/T 2 = Iq/T . In an experiment in
which a constant current I is flowing, and we measure for
time T , σ2

I is the variance in the current that we would
observe across the repeats of the experiment simply due
to the fact that the charge is composed of elementary
units q which are not infinitely divisible.

Sources of noise that are directly analogous to the
Johnson noise and the shot noise also act on the molecu-
lar level and can be observed in a wide variety of settings
in biology. Before continuing, consider two additional
interesting examples.

In human vision, the photoreceptors in our retinas
are very efficient at responding to small photon fluxes at
low ambient light levels, when the retina is dark adapted.
In an interesting set of experiments, various groups have
delivered flashes of light of mean intensity I to human
observers that needed to report whether they saw the
flash or not. This procedure allowed the experimenters
to trace out the psychometric response curve, with mean
intensity I on x axis, and the probability of detection on y
axis, summarizing the limits to human vision. This curve
is not a step function, but rather has a smooth transi-
tion region, and for a while it was hypothesized that this
“fuzziness” in transition might be due to the processing
downstream from the retina: after all, the signals need to
travel into the brain, where we take a conscious decision
that might be corrupted by noise, because, for example,
our attention during the experiment faltered, or for many
other possible reasons.

Retinal processes that underlie vision are able to detect
to single photons: a photon hitting retinal (the pigment
in rhodopsin molecules) can cause a chain of chemical re-
actions with high gain that ends up delivering a pulse at
the photoreceptor output, and that pulse subsequently
gets reported to the central brain in the spike trains of
retinal ganglion cells. The fuzziness in the transition re-
gion that was observed in the experiments was not due
to imperfect circuitry of the retina or the brain; rather,
when delivering light pulses with intensity I, the experi-
menters were really delivering N̄±

√
N̄ photons (variance

due to Poisson shot noise) in a given interval of time8.
The smooth rise in the psychometric curve was due to
this spread in the number of photons actually delivered
– humans really respond reliably to as few as 6 photons,
and at those low light levels, the fractional fluctuation in

The mean number n̄, or alternatively the rate r = n̄/T , are
sufficient statistics for Poisson processes.

8 The number of photons emitted is related to the wavelength of
the light and the duration of the pulse. The number of photons
incident on the photoreceptors in addition depends on the geom-
etry of the eye and the light source, and possible scattering and
absorption of light in the intervening medium.

the number of emitted photons at each pulse is significant
(i.e. ∼ 1/

√
N̄). Remember that the inability to deliver a

precise number N of photons is not due to experimenters’
lack of attention to detail: the emission of photons is a
quantum probabilistic process and the Poisson shot noise
is a basic physical limit that cannot be circumvented by
a classical light source.
In addition to shot noise, we can also find the analogs of

thermal (Johnson) noise in early vision. Due to thermal
fluctuations, there is a small chance that the molecule of
retinal will undergo a spontaneous conformational transi-
tion exactly mimicking the one that would normally have
been caused by an impinging photon. There is no way for
the downstream neural circuitry to distinguish whether
such an event was a “real,” photon-induced transition,
or a thermal fluctuation. Both in our eyes and in CCD
cameras, this so-called “dark current” acts as a constant
background hash causing false positives even if the de-
tection circuit were otherwise perfect (Bialek, 2002).
In bacterial chemotaxis, bacteria like Escherichia

coli implement a well-studied strategy of swims and tum-
bles, that is, periods of swimming in straight lines when
the flagella coherently bundle in a cork-screw-like pro-
peller, and periods when flagella turn incoherently, caus-
ing the bacterium to randomize its direction. The bac-
teria also like to swim towards sources of molecules that
they find useful (“chemoattractants”), and they achieve
this by modulating the frequency of random tumbles: as
long as the concentration of chemoattractants that the
bacterium senses is increasing with time, the tumbling is
repressed (since the swimming is in the correct direction);
if the concentration is decreasing, tumbling is enhanced.
Often, these chemoattracting chemicals will be present

at very low concentrations, and one can ask the ques-
tion “how well can bacteria, even in principle, tell along
which direction in space the concentration is increasing”?
If the chemoattractant c were at high enough concentra-
tion, one could imagine the bacterium having a detector
for c in its front and its back, which would allow it to
measure the gradient of c by simply measuring the front-
to-back difference. Operating at very low c concentra-
tions, however, we need to stop thinking about continu-
ous and infinitely precise concentration fields and start
thinking about single ligand molecules. As this hypothet-
ical bacterium “sniffs” with its front detector, it might
measure, in time T , N̄front molecules on average at the
front, and N̄back molecules in the back. But the molecules
are discrete entities, so each of these measurements will
fluctuate around the mean by

√
Nfront and

√
Nback from

measurement to measurement. Taking a difference be-
tween the front and the back counts, in the presence of
this noise (and with no temporal averaging), is a very
bad strategy for inferring the direction of the chemoat-
tractant source. If Nfront − Nback +

√
Nfront, then the

estimate of the gradient will be completely swamped by
noise.
While this direct strategy for estimating the gradi-

ent is implemented by certain eukaryotic cells (which
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are much bigger and therefore able to measure the con-
centration differences better), bacteria – to deal with
the noise problem – implement a very different strategy
of integrating the change of measured chemoattractant
concentration over time. The trick is to realize that
dc($x(t))/dt = ∂c/∂t + ∇c · $v; therefore, in a tempo-
rally constant gradient, the time derivative of the con-
centration measured by the bacterium at its position,
$x(t), swimming with velocity $v(t) = $̇x(t), is related to
the spatial gradient of the concentration. It is also clear
that with this strategy, bacteria can be experimentally
“tricked” into believing that they move in a spatial gra-
dient of the concentration, where really the concentration
is spatially uniform but variable in time; this has been
the basis of many beautiful chemotactic experiments by
H. Berg and coworkers (Berg et al, 1972).

In summary, in biology many important processes de-
pend on events that occur between very small numbers
of molecules. This can either be the detection of a single
photon by the photopigment in the retina, or the detec-
tion of chemoattractant molecules by the swimming bac-
terium, or perhaps the binding of the transcription factor
to its binding site. After all, in the last example one can
think of the binding site trying to detect or “measure”
the TF concentration, making this example analogous to
detecting chemoattractants or photons; it doesn’t really
matter that in one case the ligands are internal to the
cell and in the other the ligands are external. On gen-
eral grounds, we expect that in all instances where small
numbers of molecules are involved in control processes,
noise might be an issue.

C. Impact of noise in biological systems

When we study problems in mechanics, we begin by
clearly delineating what is our system of study and what
is the environment. The same distinction is useful when
we talk about noise. For example, our system of study
might be a single genetic regulatory element, denoted by
c → g, and its environment is the cellular environment
of the particular single cell in which this system is em-
bedded. This distinction is central because in an experi-
ment, we will often observe many instances of the system,
and in each instance measure the input c and output g
– this is how many noise experiments using single-cell
microscopy or FACS (fluorescence activated cell sorting)
are performed.

Once we measure the response g given the input c and
the fluctuation in the response σ2

g(c), we need to ask what
sources of variability contribute to that measured fluctu-
ation. One source is the intrinsic noise in the regula-
tory element c → g itself, contributed by the inherently
stochastic molecular processes that we discussed above
and will soon return to. Another source of noise, how-
ever, called extrinsic noise, arises because the cellular en-
vironment changes from cell to cell; that is, one cannot
guarantee that the system of study is always exposed to

the same conditions. For example, the RNA polymerase
concentration might fluctuate from cell to cell, and even
if the process c → g would in itself contribute no intrin-
sic noise, the fact that this is transcriptional regulation
process that involves RNAP and RNAP varies in the en-
vironment (from cell to cell), will induce some variance
in measured g across the population of cells. There is
nothing fundamentally different about the intrinsic and
extrinsic noise; the distinction is useful solely when a sys-
tem of study can be enclosed into a conceptual box and
separated from the environment, and the noise in the sys-
tem can be separated from the noise in its environment
by clever experimental techniques9 (Swain et al, 2002).
We introduced the abstraction of input / output de-

vices in the previous lecture. Correspondingly, it makes
sense to divide the intrinsic noise into the input and out-
put contributions. In a regulatory process c → g, where
TF c controls gene g, the total noise in g, σ2

g(c), can arise
from two kinds of sources. The first source, the output
noise, deals with the generation of output. In our case
this is the transcription of mRNA molecules and their
translation into protein molecules g. This source of noise
would be present even if there were no transcriptional
regulation whatsoever, i.e. if the gene were constitutively
expressed. By making more and more mRNA and pro-
tein molecules, the relative impact of the output noise
can be reduced.
The second source of noise is called the input noise, and

this arises because the concentration c at the binding site
location itself is fluctuating (we will discuss why soon).
This source of noise is important for two reasons: (i) it
gets mapped through the nonlinear input/output relation
ḡ(c) to give rise to the total measured noise in g; (ii) the
input noise cannot simply be reduced by clever design at
the output end. This is familiar to anyone who has dealt
with electronics – the noise in the input to the amplifier
is the noise that no amount of gain can reduce away.
When studying biological systems, we are faced with

additional sources of fluctuation that are sometimes also
referred to as noise, but contribute in addition to the
fundamental sources of variability (such as thermal or
shot noise sources discussed above). The fundamental
sources of noise, or physical limits to precision in biology,
are the lower bound on the noise that biology cannot
avoid. But clearly biological processes can be more noisy
than the lower bound set by physics10.

9 This is similar to internal and external forces acting on the sys-
tem in mechanics. There is nothing physically different between
external and internal forces. However, we need to account for
them properly and not mix them up when writing down the dy-
namical equations for the system of interest.

10 An interesting choice of systems for study are therefore those sys-
tems which are believed to be under strong evolutionary pressure
to reduce noise as far as possible, perhaps down to the physical
limits to precision. It is thought that dark vision is one of such
systems, because it gives selective advantage to both predators
or pray that can see after sunset, or even in starlight. Perceptual
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One such additional source is experimental noise that
corrupts our measurements, independently of the actual
noise in the biological system. Often, we don’t have any
theoretical understanding of what form this noise has,
unlike in physics where the responses of the measurement
devices can precisely be characterized. For example, mi-
croarray assays are a very popular high-throughput way
of measuring the activity levels of various genes. How-
ever, there is no clear understanding of how the real level
of mRNA in some physical units maps into the log light
intensity ratios usually reported [in other words, what
is P (log light ratio|mRNA level)]. Therefore, inference
from the measurement to the underlying quantity of in-
terest (which you can think of as decoding the raw ex-
perimental data into the the true mRNA levels) is often
done using some ad hoc procedure; in Section V we dis-
cuss how information-theoretic inference can circumvent
precisely this problem of unknown experimental noise.

Finally, how important really is noise to biology? The
rough answer is that this depends on the system, and
in particular to whether ultimately we can trace cellular
(or neural) decisions to single microscopic rare events. If
that is the case, the expectation is that the noise will
play a large role. For example, the λ switch in the phage
controls the fate of the virus, i.e. whether it will stay lyso-
genic or turn lytic. The bistable switch is controlled by a
small number of transcription factor repressor molecules,
called cro and cI, that compete for the same binding sites
(Ptashne, 1989). In this case, the fate of the cell is tied
to a single molecular decision, and therefore the stochas-
ticity is important (McAdams et al, 1997). The same can
be said for rates of “spontaneous switching,” where ther-
mal noise is able to flip a genetic switch. This is a rare,
yet potentially important event, and considerable theo-
retic effort goes into computing the frequencies of such
rare events.

Overall, in both genetic regulation and neural systems,
the noise limits the amount of information that the net-
work can transmit. Nevertheless, the noise can often be
treated as a small fluctuation riding on top of the sig-
nal. In protein-protein signaling networks (such as the
two-component systems in bacteria), the intrinsic noise
is thought to be small, because the reactions involve hun-
dreds to thousands of signaling molecules. On the other
hand, these molecules are proteins, transcribed from the
genes and regulated by transcription factors, so the ex-
trinsic noise can be large due to the slow (compared to
the timescales of signaling reactions) random fluctuation
in the total numbers of signaling proteins. There is ev-
idence that biology tries to choose network wirings that
make signaling networks robust with respect to this ex-
trinsic source of slow fluctuations (Barkai et al, 1997).

studies that show human visual sensitivity approaching the limit
set by the Poisson statistics of incoming neurons support this
hypothesis.
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FIG. 12 A fully stochastic simulation of a simple model of
gene expression using reactions specified in Eq (9). The sim-
ulation starts with g(t = 0) = 0 proteins; the steady state
is reached after about 70 minutes. On the left, the trajecto-
ries of 20 simulation runs. On the right, the mean trajectory
plotted in a solid line; mean ± 1-std plotted in dashed lines.
The envelope measures the steady state level of noise due to
(i) random promoter switching and (ii) the shot noise in pro-
ducing the output molecules.

D. Derivation of noise for simple gene regulation

Let’s return to the simple gene regulation scenario of
Fig. 3. We will sketch how the noise can be derived in
this model using the Langevin approximation, and give
a back-of-the envelope estimate for the terms that we do
not compute here. The reader is invited to view the full
derivation in Ref (Tkačik et al, 2008).
We start with the dynamical equations:

dn

dt
= k+c(1− n)− k−n+ ξn (32)

dg

dt
= Rn− 1

τ
g + ξg, (33)

where again we take the binding site occupancy n to be
between 0 and 1, and the expression level of the out-
put gene is g; g is produced with rate R when the bind-
ing site is occupied, and the proteins have a lifetime of
τ . We have already shown that the equilibrium solution
of this system is n̄ = k+c/(k+c + k−) and ḡ = (Rτ)n̄.
Here we are interested in the fluctuations, σg(c), around
the steady state, that arise purely due to intrinsic noise
sources: (i) the fact that the binding site only has two bi-
nary states that switch on some characteristic timescale,
(ii) the fact that we make a finite number of discrete
proteins at the output, and (iii) the fact that the input
concentration c might itself fluctuate at the binding site
location.
One approach would be to simulate the system of

Eqs (32,33) exactly using the Gillespie SSA algorithm.
For a given and fixed level of input c, the results of 20
such simulation runs are shown in Fig. 12.
To compute this noise analytically instead of using the

simulation, we have introduced random Langevin forces
ξn, ξg. Consider the second equation, Eq (33). A sin-
gle protein is produced anew, or is degraded, as an ele-
mentary step (since you don’t make half a protein). In
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equilibrium, the production term Rn̄ balances the degra-
dation term, ḡ/τ . Now consider some time T in which
RTn̄ = ḡT/τ ≈ 1, i.e. one molecule is produced or de-
stroyed on average and with equal probability. While
the expected change in the total number in equilibrium
in time T is zero, the variance is not: the variance is
equal to 1

2× (production of 1 molecule)2 + 1
2× (degra-

dation of 1 molecule)2 = 1. In general, the variance will
be T (Rn̄ + ḡ/τ) if we measure for time T . If you are
familiar with random walks in 1D, this sounds very fa-
miliar: the mean displacement is 0 (because leftwards
and rightwards steps are equally likely), but the variance
in displacement from the origin grows with time T .

Statistical physics tells us that in order to reproduce
this variance in a dynamical system, we have to insert
Langevin forces with the following prescription:

〈ξg(t)〉 = 0

〈ξg(t)ξg(t′)〉 = (Rn̄+ ḡ/τ)δ(t− t′). (34)

The mean random force is zero, it is uncorrelated in time,
and it has an amplitude such that the random kicks have
variance equal to the leftward and rightward step size;
this will recover our intuition about 1D random walks.
Similarly, 〈ξn(t)ξn(t′)〉 = (k+c(1− n̄) + k−n̄)δ(t− t′).

To proceed, we first linearize Eqs (32,33) around the
equilibrium, by writing n(t) = n̄+δn(t), g(t) = ḡ+δg(t).
Then we introduce Fourier transforms:

δn(t) =

∫
dω

2π
δñ(ω)e−iωt (35)

δg(t) =

∫
dω

2π
δg̃(ω)e−iωt. (36)

Fourier transforms of ξn and ξg are simply ξ̃n = 2k−n̄ and
ξ̃g = 2Rn̄, respectively (because the Fourier transform of
a delta-function is 1, and we have also used the fact that
in equilibrium, the two terms that contribute to each
Langevin force are equal).

With this in mind, the system of equations in the
Fourier space (denoted by tildes) now reads:

− iωδñ = − 1

τc
δñ+ ξ̃n (37)

−iωδg̃ = Rδñ− 1

τ
δg̃ + ξ̃g, (38)

where τ−1
c = (k+c+ k−).

We ultimately want to compute σ2
g(c). The total vari-

ance is composed from fluctuations at each frequency ω,

integrated over frequencies11:

σ2
g =

∫
dω

2π
〈δg̃(ω)δg̃∗(ω)〉 =

∫
dω

2π
Sg(ω), (39)

where Sg(ω) is called the noise power spectral density of
g, and the asterisk denotes complex conjugate. We see
that we need to solve for δg̃ first from Eqs. (37,38):

δg̃ =
Rξ̃n

(−iω + τ−1
c )(−iω + τ−1)

+
ξ̃g

−iω + τ−1
. (40)

Next, we compute 〈δg̃(ω)δg̃∗(ω)〉. Recalling the defini-
tions of 〈ξ̃ξ̃∗〉 [Eq (34)], we find that

Sg(ω) =
R2(2k−n̄)

(ω2 + τ−2
c )(ω2 + τ−2)

+
2Rn̄

ω2 + τ−2
. (41)

The binding and unbinding of the promoter is usually
much faster than the protein decay time, τc + τ . Using
this and the fact that

∫∞
−∞ dx(x2 + 1)−1 = π, we finally

find

σ2
g(c) = ḡ(c) +

(Rτ)2

k−τ
n̄(1− n̄)2. (42)

If we normalize the expression level g such that it ranges
between 0 (no induction) to 1 (full induction) by defining
ĝ = ḡ/(Rτ), then the noise in ĝ is

σ2
ĝ(c) =

1

Rτ
ĝ +

1

k−τ
ĝ(1− ĝ)2. (43)

Our result is lacking at least one important contribution
to the total noise. The formal derivation of this term is
involved (Tkačik et al, 2008; Setayeshgar et al, 2005), so
we will estimate it here up to a prefactor. In our deriva-
tion we have not taken into account that the molecules
of transcription factor are brought to the binding site by
diffusion. The diffusive arrival of molecules into a small
volume around the binding site is a random process as
well: it will induce some noise in occupancy of the bind-
ing site, and thus in the expression level ĝ. This is the
contribution we are going to estimate.
Suppose that the binding site is fully contained in a

physical box of side a. When the average TF concentra-
tion in the nucleus is fixed at c̄, the average number of
molecules in the box is N̄ = a3c̄. This, however, is only
the mean number; if we were to actually sample many
times the number of molecules in the box, we would find
that our counts are distributed in a Poisson fashion, with

11 Because the noise process is stationary (time-translation invari-
ant), the noise covariance 〈δg(t)δg(t′)〉 = Cg(|t− t′|) will depend
on the difference in time only, and going into the Fourier basis
will diagonalize the covariance matrix. The total noise variance
is the integral over these independent Fourier components, and
that is equal by Parseval’s theorem to the total noise variance
obtained by doing the corresponding integral in the time domain.
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a variance equal to the mean: σ2
N = N̄ . This is just the

familiar shot noise in a new, molecular disguise!
How can one reduce the fluctuations σ2

N? As always,
one can make more independent measurements, and aver-
age the noise away. With M independent measurements,
the effective noise should decrease, σ2

N,eff = σ2
N/M . Sup-

pose the binding site measures for a time τ (the protein
lifetime, the longest time in the system). How many in-
dependent measurements were made in the best possible
case? It takes t0 = a2/D time for the molecules to dif-
fuse out of the box of size a and be replaced with new
molecules; if we take snapshots and count the molecules
at intervals faster than t0, we are not making independent
measurements. Therefore M = τ/t0 = τD/a2. Plug-
ging this into the expression for effective noise, we find
σ2
N,eff = a3c̄ × a2/(Dτ). Since N̄ = a3c̄, it follows that

σ2
N = a6σ2

c , and finally:

σ2
c,eff =

c̄

Daτ
. (44)

Equation (44) is a fundamental result: any detector of
linear size a measuring concentration c, to which ligands
are transported by diffusion with coefficient D, and mak-
ing measurements for time τ , will suffer from the error
in measurement in concentration, given by σc. This con-
tribution to the noise is called diffusive noise, and it is a
special form of input noise.

To assess how this error maps into the error in the
gene expression g, note that any error at the input can
be propagated to the output through the input/output
relation, ḡ(c) [see Fig 13]:

σ2
g =

(
dḡ

dc

)2

σ2
c . (45)

Adding the diffusive noise to previously computed terms
in Eq (43), we find:

σ2
ĝ(c) =

1

Rτ
ĝ +

1

k−τ
ĝ(1− ĝ)2 +

ĝ2(1− ĝ)2

Dac̄τ
. (46)

Let us stop here with the derivation, interpret the
terms and summarize what we have learned so far. We
tried to compute various contributions to the noise in
the expression of gene g, in a simple regulatory element
where the TF c regulates g. In any real organism, such a
small regulatory element will be embedded into the reg-
ulatory network, and c will experience fluctuations on its
own that will be transmitted into fluctuations in g, the
so-called transmitted noise, in addition to intrinsic noise
calculated here (Pedraza et al, 2005).

On top of intrinsic and transmitted noise sources, the
output will also fluctuate due to the extrinsic noise be-
cause the cellular environment of the regulatory network
is not stable. But even without these complications, we
can identify at least three contributions intrinsic to the
c → g regulatory process:

Output noise. This is the first term in Eq (46), where
the variance σ2

ĝ ∝ ĝ. Funamentally, this is a form of shot

FIG. 13 Propagating the noise in the input σc, through the
mean input/output relation, ḡ(c), into the effective noise in
the output, σg. The variances are related by the square of the
local slope of the input/output curve, dḡ/dc.

noise that arises because we produce a finite number of
discrete output molecules. In the simple setting discussed
here, the proportionality factor really is 1 [when g is mea-
sured in counts, as in Eq (42)], and this is a true Poisson
noise where variance is equal to the mean. If we treated
the system more realistically, with separate transcription
and translation steps, the proportionality constant could
be different from 1; a more careful derivation shows that
then, σ2

ĝ = (1 + b)/(Rτ)ĝ, where b is the burst size, or
the number of proteins produced per single mRNA tran-
script, on average (Tkačik et al, 2008). This is easy to
understand: the “rare” event is the transcription of a
mRNA molecule, and that has true Poisson noise statis-
tics, but for each single mRNA the system produces b
proteins, and the variance is thus multiplied by b.

Input promoter switching noise. This is the sec-
ond term in Eq (46). The source of this noise is binomial
switching of the promoter, as it can only be in an in-
duced (n = 1) or empty (n = 0) states. If we interpret
n̄ as the probability of being occupied, then the variance
must be binomial n̄(1− n̄). Fluctuations between empty
and full states of occupancy happen with the timescale τc
[see Eq (37)], and the system averages for time τ , so τ/τc
independent measurements are made, reducing the bino-
mial variance to n̄(1− n̄)τc/τ . Since τck− = (1− n̄) and
n̄ = ĝ, we recover the switching term, ĝ(1− ĝ)2/(k−τ).

This term depends on the microscopic way the pro-
moter is put together, hence the dependence on the ki-
netic parameter k−. Regardless of these details, how-
ever, every promoter that has an “on” and “off” state
will experience fluctuations similar in form to these de-
rived here. In our example, k− is the rate of TF unbind-
ing from the binding site and this is usually assumed to
be very fast compared to the protein lifetime (in other
words, the occupancy of the promoter is equilibrated on
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the timescale of protein production). In other scenar-
ios that effectively induce gene switching, however, this
assumption of fast equilibration might not be true. In
particular, attention has lately been paid to DNA pack-
ing and regulation via making the genes (in)accessible to
transcription using chromatin modification. The packing
/ unpacking mechanisms are thought to occur with slow
rates, and such switching term might be an important
contribution to the total noise in gene expression (Raj et
al, 2006).

Input diffusion noise. The last term in Eq (46),
as discussed, captures the intuition that even with the
fixed average concentration c̄ in the nucleus (that is,
even if c did not undergo any fluctuation relating to
its own production, degradation and regulation), there
would still be local fluctuations at its TF binding site lo-
cation, causing noise in g. This contribution is important
when c is present at low concentrations. As an exercise,
one can consider the approximate relevance of this term
in case of prokaryotic transcriptional regulation, where
D ∼ 1 µm2/ s, the size of the binding site a ∼ 3 nm,
the relevant TF concentrations are in nanomolar range,
and the integration times in minutes. It has been shown
that this kind of noise also represents a physical limit
in the sense that it is independent of the molecular ma-
chinery at the promoter, as long as the predominant TF
transport mechanism is free diffusion.

What we presented here theoretically was a simple ex-
ample, but even so we’ll see in the next section that
the correspondence with the experiment is unexpectedly
good. What is important for the lecture, however, can
be summarized in the following observations: (i) Not
only can we make models for mean input/output rela-
tions, but we can compute the noise itself, as a function
of the input. Noise behavior is connected to the kinetic
rates of molecular events, which are inaccessible in any
equilibrium measurement of mean input/output behav-
ior. Therefore, if noise is experimentally accessible, it
provides a powerful complementary source of informa-
tion about transcriptional regulation. (ii) There are fun-
damental (physical) sources of noise which biology can-
not avoid by any “clever” choice of regulatory appara-
tus; thus the precision of every regulatory process must
be limited. These sources all fundamentally trace back
to the finite, discrete and stochastic nature of molecu-
lar events. In theory, the corresponding noise terms thus
have simple, universal forms, and we can hope to measure
them in the experiment. (iii) There are sources of noise
in addition to the fundamental, intrinsic ones, including
extrinsic, experimental, etc. The hallmark of a good ex-
periment is the ability to separate these sources by clever
experimental design and/or analysis. We’ll show how ex-
trinsic and intrinsic noise sources can be separated in the
examples below; in Section V we show how to deal with
unknown experimental noise.

E. Experiments

With the advent of quantitative microscopy, the use
of protein-GFP fusions and FACS measurements, noise,
precision and reproducibility in gene regulation have be-
come central themes in biophysics and molecular biology.
A milestone has certainly been the two-color experiment
of Elowitz and coworkers (Elowitz et al, 2002), allowing
the separation of intrinsic and extrinsic noise sources.
The basic idea of the two-color experiment is sim-

ple. To study a genetic regulatory mechanism c → g,
one engineers a bacterium to have two (almost) identi-
cal genes differing only in the color protein fusions; say
g1 = g−CFP and g2 = g−Y FP . Both of these genes are
regulated by the same transcription factor, c, and have
the same promoters. The bacteria grow under the micro-
scope, and for each bacterium, it is possible to collect the
joint measurements of (g1, g2) at a given fixed induction
level (related to c or the concentration of its inducer).
The basic realization of the experiment is as follows:

scatter-plotting the values of (g1, g2) collected from a cell,
one can split the total variance in this cloud of points into
the variance along the “correlated” axis (along the equal-
ity line), and the “perpendicular” axis, as in Fig. 14.
These two orthogonal contributions are then identified
with the extrinsic and intrinsic noise strengths, respec-
ticely. The fluctuations in g1 and g2 can be correlated
only because they don’t happen in the system c → g it-
self, but in its intracellular environment, which affects
both copies of g1 and g2 equally, in a correlated fashion.
The intrinsic noise, however, is due to the terms we pre-
viously discussed in relation to Eq (46), and would be
present even if the cellular environments were perfectly
stable and reproducible. The intrinsic noise is uncorre-
lated, because random events in the c → g regulatory
system happen independently in each of the two-color
replicas in the cell. This “two-color” trick has enabled a
whole set of experiments in which contributions from var-
ious steps in more complicated regulatory schemes, e.g.
cascades c → g1 → g2, have been teased apart (Pedraza
et al, 2005; Hooshangi et al, 2005). Again, note that “in-
trinsic” and “extrinsic” are a matter of where one chooses
to draw the boundary of the system and which part of the
regulatory element gets replicated to apply the two-color
paradigm.
A number of studies have since focused on the noise in

prokaryotic gene expression. The findings indicate that
the dominant sources of noise are the output (intrinsic)
noise of making mRNA transcripts with relatively short
correlation time (in minutes), and the extrinsic noise with
long correlation time (of the order of a cell cycle) (Rosen-
feld et al, 2005). The noise in units of the mean, σg/ḡ,
is very roughly of the order of ∼ 20%. A similar set of
results was obtained in a high-throughput essay in yeast,
where the noise was found to scale with the mean with a
large prefactor, consistent with bursty expression (Bar-
Even et al, 2006). An earlier study in the GAL promoter
in yeast has, however, found a significant contribution of
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FIG. 14 The schematic diagram of the two color experiment.
a) The system of interest (in a square box) is a gene g reg-
ulated by the transcription factor c. Two identical copies of
the gene and its promoter are inserted; one gene is fused to
yellow, while the other to the cyan fluorescent protein. The
system is embedded into the cellular environment, and both
copies of the gene share the same pool of transcription fac-
tors, RNA polymerase molecules etc. At a fixed level of c, the
joint readouts in the yellow and cyan channels are taken and
scatter-plotted against each other, as in b). Some of the vari-
ance is correlated, because the two copies in our system share
the same cellular environment and are coherently impacted
by the fluctuations in c, RNAP etc. This is the extrinsic
noise component. Orthogonal to that is the uncorrelated (or
intrinsic) noise component, due to the fluctuations that hap-
pen separately and independently in each of the two identical
gene copies in our system.

a noise that looks like the input switching noise, and has
explained it by the cycling of the promotor through its
microscopic states (Blake et al, 2003).

Later work in higher organisms has revealed an ever
more important role of the intrinsic input noise, both
the switching and the diffusive components. In mam-
malian cells, it has been possible to observe the number
of mRNA molecules using the FISH method, and it was
found that whole genes (or even sets of collocalized genes
on the DNA) stochastically switch on and off; this might
be a consequence of chromatin remodeling mechanisms
(Raj et al, 2006).

Our work in gene regulation during early Drosophila
morphogenesis has tried to quantitatively connect the
model of Eq (46) with the experimental data (Gregor
et al, 2007; Tkačik et al, 2008). During development,
each nucleus in the embryo of the fruit fly experiences a
spatially varying concentration of the input transcription
factor, bicoid, c, and activates the expression of hunch-
back, g; both of these quantities can simultaneously be
measured using immunostaining and microscopy meth-
ods. Many nuclei experience the same level of input, c,
in the same embryo. We can thus ask, for each input
c, about the mean input/output relation, ḡ(c), and also
for the noise σg(c), and these two measurements can be
combined into σg(ḡ), the noise in hunchback expression
as a function of mean induction, shown in Fig. 15.
All three fits of the theoretical models to the data

shown in Fig. 15 are two parameter fits. We fit essen-
tially the same model as that of Eq (46); the only ex-

FIG. 15 The noise in the expression level of hunchback, σg,
plotted as a function of mean hunchback induction ḡ, nor-
malized to span the range from 0 to 1. Experimental data
is shown as circles, with error bars denoting the std across
9 embryos. The solid black line is a fit of the model with
output and input diffusive noise terms, assuming known Hill
coefficient of 5 for the hunchback regulation by bicoid. In red
dashed line, the same fit using the Hill coefficient of infinity
(step like response). In blue, the fit using the input switching
noise and the output noise contributions. The black two-
parameter fit describes the data very well.

ception is that the noise is derived for a cooperative pro-
moter with cooperativity of 5, which can be read off from
the Hb/Bcd input/output relation, see Fig. 8. One pa-
rameter is always the magnitude of the output noise [the
prefactor to the output noise term of Eq(46)]. The sec-
ond parameter is the magnitude of the input diffusive
noise (for solid black and red lines), or the magnitude of
switching noise (blue line). The solid black fit describes
the data excellently, and the following conclusions can
be drawn from this study: (i) Qualitatively, input noise
sources produce a peak in the noise at intermediate ex-
pressions when one plots σĝ vs ĝ. The input noise goes to
0 for zero or full induction. In contrast, the output noise
increases monotonically with the induction. Therefore,
whenever the experiment claims a peak in the noise, this
is likely due to the non-negligible contribution of input
noise to the total. (ii) The previous intuition also enables
us to interpret the two fitted parameters. The strength
of the output noise is proportional to the noise magni-
tude at full induction, ḡ = 1, while the fitted strength of
the input noise is proportional to the size of the peak at
intermediate induction. (iii) We find that the fitted val-
ues of parameters are consistent with plausible values for
transcriptional regulation: i.e., the magnitude of output
noise is related to the number of molecules of hunchback
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per nucleus (estimated from the fit to be ∼ 700− 4000),
and the magnitude of the input noise is consistent with
the measured bicoid diffusion constant and integration
time.

F. Relation to neuroscience

Processes that underlie the limits to temporal precision
of single neurons are physically analogous to the noise
sources discussed in gene regulation; indeed, the study
of temporal jitter in neural spiking predates the study of
noise in gene regulation by several decades.

A neuron generates the ionic currents by opening
and closing of ion channels. These proteins have
voltage-dependent probabilities, p(V ), of being open or
closed. This nonlinear dependence, combined with the
cable equation for propagating voltage disturbances in
a medium with some capacitance, gives rise to self-
excitability and generation of action potentials.

By making an analogy to the binomial “switching
noise” in gene regulation, we see that for each ion chan-
nel, there will be an associated binomial variance in its
activity, proportional to p(V )(1 − p(V ))12. This vari-
ance is reduced because there are many channels in each
neuron that open and close independently (here we have
population noise averaging, similar to temporal averag-
ing in gene expression), but it is not reduced to zero. Us-
ing patch-clamp techniques it has been possible to elec-
trically isolate a small patch of the membrane contain-
ing a very small number of channels, and to observe the
quantal pulses of current flowing through single channels.
This randomness in opening and closing of ion channels is
one of the reasons why the neurons do not respond with
identical spike trains to presentations of exactly repeated
inputs.

IV. INTRODUCTION TO INFORMATION THEORY

Up to this point we have stressed the role of noise in bi-
ological networks and mentioned several time that noise
limits the ability of the network to transmit information;
in this lecture we will turn this intuition into a mathe-
matical statement.

Recall that in our introduction to noise, we started
with a probabilistic description of an information trans-
mission system: given some input c, the system maps will
map it into the output g using a probabilistic mapping,
P (g|c). In case there were no noise, there would be no
ambiguity, and g = g(c) would be a one-to-one function.

Suppose that the inputs are drawn from some distri-
bution P (c) and fed into the system which responds with

12 In principle, there could also be an associated “shot noise” vari-
ance in the number of ions that flow through these channels.

the appropriate g. Then, pairs of input/output symbols
are distributed jointly according to

P (c, g) = P (g|c)P (c) (47)

In what follows, we will be concerned with finding ways
to measure how strongly the inputs (c) and the outputs
(g) are dependent on each other. It will turn out that
the general measure of interdependency will be tightly
related to the concept of information.

A. Entropy and mutual information

Let’s suppose that our information transmission “black
box” would be a hoax, and instead of encoding c into g in
some fashion, the system would simply return a random
value for g no matter the input c. Then c and g would be
statistically independent, and P (c, g) = P (c)P (g); such
a box could not be used to transmit any information.
As long as this is not true, however, there will be some
statistical relation between c and g, and we want to find
a measure that would quantify “how much” can I know,
in principle, about the value of c by receiving outputs
g, given that there is some input/output relation P (g|c)
and some distribution of input symbols P (c).
The first quantity that comes to mind as the interde-

pendency measure between c and g is just the covariance:

Cov(c, g) =

∫
dc

∫
dg(c− c̄)(g − ḡ)P (c, g); (48)

it is not hard, however, to construct cases in which the
covariance is 0, yet c and g are statistically dependent.
Covariance alone (or correlation coefficient) only tells us
about whether c and g are linearly related, but there
are many possible nonlinear relationships that covariance
does not detect; for example, see Fig 16.
Moreover, we would like our dependency measure to be

very general (free of assumptions about the form of the
probability distribution that generated the data) and de-
finable for both continuous, as well as discrete outputs13.
We will claim, following Shannon, that there is a

unique, assumption-free measure of interdependency,
called the mutual information between c and g. Before
we define it, however, we need to define another quantity,
called the entropy of a distribution P (c):

S[P (c)] = −
∫

dc P (c) log2 P (c) (49)

To keep things simple, let’s for now assume that the
value of interest is discrete, that is, that c can only take
on the values ci, i = 1, . . . ,K. In that case

S[P (c)] = −
K∑

i=1

P (ci) log2 P (ci). (50)

13 Covariance can be problematic when used on discrete quantities.
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2.1 Computing correlations 6

case in which they are perfectly linearly correlated and |Rij | = 1. R can be taken as a
measure of the goodness-of-fit if the model dependence is linear, i.e. σj = Aσi + B.

Despite being conceptually appealing and easy to estimate from the data, correlation
has at least two problems as a generic measure of dependency. Firstly, it does not capture
non-linear relationships, as shown in Fig 2.1b; secondly, when σ take on discrete values
that are not ordered (e.g. a set of possible multiple-choice responses on a test), the linear
correlation loses its meaning, although the problem itself is well posed (e.g. What is the
correlation between two answers on a multiple-choice test across respondents?).
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2.1a: Linear correla-
tion.

!1 !0.5 0 0.5 1
!2

!1.5

!1

!0.5

0

0.5

1

1.5

2

!
i

!
j

I=0.7 bits, C" 0

2.1b: Nonlinear cor-
relation.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

!
i

!
j

I" 0, C" 0
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Figure 2.1: Correlation coefficient and mutual information as measures of dependency. Left panel:
the points drawn from a joint distribution that embodies linear dependence plus noise have both a
high mutual information and high linear correlation. Middle panel: in case of nonlinear dependence,
the correlation coefficient can be zero although the variables are clearly strongly correlated. Right
panel: if the joint probability distribution is a product of factor distributions for both variables,
then the correlation coefficient and the mutual information measures are zero.

There is an alternative way of defining dependency, or correlation, between two variables
due to Shannon (Shannon, 1948; Cover and Thomas, 1991). Let us suppose that both σi

and σj are drawn from a joint distribution p(σi,σj). For argument’s sake, suppose further
that we do not know anything about the value of σi. Then the entropy of p(σj):

S[p(σj)] = −
∫

dσj p(σj) log2 p(σj) (2.3)

is a useful measure of uncertainty about the value of σj , and, as defined above, is a value
measured in bits. This information-theoretic entropy is equivalent to physical entropy up to
a multiplicative constant, and is defined up to an additive constant (connected to the finite
resolution of σ) for continuous variables, with a straightforward generalization for discrete
variables.

We have assumed that σi and σj have been drawn from an underlying joint distribution;
in contrast to the case above, if we actually know something about σi, our uncertainty
about σj might be reduced. The uncertainty in σj that remains if the value of σi is known
is again defined by the (conditional) entropy:

S[p(σj |σi)] = −
∫

dσj p(σj |σi) log2 p(σj |σi). (2.4)

We can now define the mutual information between elements σi and σj as:

I(σi;σj) = S[p(σj)] − 〈S[p(σj |σi)]〉p(σi), (2.5)

FIG. 16 Examples of two variables, drawn from three joint
distributions. Shown are the scatterplots of example draws.
On the left, the variables are linearly correlated, and the cor-
relation is close to 1. In the middle, the variables are interde-
pendent, but not in a linear sense. The correlation coefficient
is 0, but measures of statistical dependence, such as mutual
information, give non-zero value. Note that we are looking
for a general measure of interdependency: if we had a model
that assumes that x and y lie on a circle, we could fit that
particular model or use a measure that makes the circular as-
sumption. Instead, we would like to find a measure that de-
tects the dependency without making any assumptions about
the distribution from which the data has been drawn. On the
right, the variables are statistically independent, and both
linear correlation and mutual information give zero signal.

If the data were continuous, we would have discretized
it prior to computing the entropy (we discuss the dis-
cretization later); the measure that we are after, the mu-
tual information, will turn out to be independent of dis-
cretization.

Entropy can be defined for any distribution. It is al-
ways positive, measured in bits, and always takes a value
between two limits: 0 ≤ S[P (c)] ≤ log2 K (in discrete
case). The entropy is zero when the distribution has its
whole weight of 1 concentrated at a single ci. The en-
tropy is maximal when P (ci) = 1/K, i.e. P is a uniform
distribution. The entropy is a unique measure of uncer-
tainty about the value of c: the uncertainty is 0 when
the distribution is peaked at a single value, and maximal
when all ci are equally likely.

In one of the fundamental works of the 20th century
science, Shannon has argued that this quantity, the en-
tropy, is connected to the amount of information that
needs to be supplied to specify a particular value of c.
Suppose c can take on 8 different values ci = 1, . . . 8, and
P (ci) = 1/8, that is, the distribution is uniform, and by
our definition, has an entropy of S = log2 8 = 3 bits.
I draw a particular ci from the distribution and don’t
share the value with you. You are allowed to ask a series
of yes/no questions about the value I chose and your task
is to determine my choice in as few questions as possible.
What is the minimum number of questions that you need
to ask, on average? This turns out to be the same as the
entropy, and in case when P (ci) is uniform, one of the
optimal strategies is bisection: “Is the chosen ci larger
than 4?” If yes, the next question could be “Is ci larger
or equal to 7?” Otherwise, you could ask “Is the chosen
value less or equal to 2?” and so on, until the correct ci
is identified. Bisection is optimal because with a single

binary question, it partitions the set of possible values
into two equally likely subsets. To show that the number
of questions is equal to the entropy even in the case of
non-uniform P (ci) one needs some extra work, but the
intuition remains the same.
Note that the entropy is the minimum number of ques-

tions, on average – across many repeats of the game. In
single instances of the game you might be lucky and hit
the correct number by simply asking “Is the correct value
ci equal to 7?”. However, this strategy will only termi-
nate in 1/8 of the games with a single question, and on
average, it is worse than the strategy of bisection.
In case of continuous variables, no number of ques-

tions can pin down the exact value of a real number,
because, mathematically, real numbers have infinite pre-
cision. In practice this is not a concern, because the
precision of physical data is always limited by noise or
measurement error. We can therefore always discretize
a continuous measurement into bins with the size of the
error bar. Formally, all information theoretic quantities
can be properly defined also for continuous variables, but
in the interest of clarity we will skip these generalizations
here.
To summarize: a “bit” is thus amount information con-

tained in a single binary response to an optimally posed
question – in other words, a bit is the maximum amount
of information that a binary question can convey. For
each distribution P (c) of some quantity c we can define a
measure called its entropy, a positive number expressed
in bits, that quantifies the uncertainty about the value
of c, and is connected to the minimal number of yes/no
questions that need to be asked to find out the value of
c on average.
Let’s now return to the original problem, where we

think about two variables, c and g, jointly distributed as
P (c, g), and we would like to quantify how statistically
dependent the two variables are. Let’s start by comput-
ing S[P (g)], and assume that our values are discretized
(so we are dealing with gj and ci, where i and j run over
all possible discrete choices for g and c, respectively):

S[P (gj)] = −
∑

j

P (gj) log2 P (gj). (51)

According to what we have just learned, this is the un-
certainty about the value of g. We can also compute the
following:

Sn(ci) = S[P (gj |ci)] = −
∑

j

P (gj |ci) log2 P (gj |ci).

(52)
This entropy still depends on c, because the sum is taken
only over the possible values for gj . The interpretation of
this quantity is the uncertainty about the value of g if we
know the value of c to be ci. If c and g are related in any
statistical way whatsoever, we expect that by knowing
c, our uncertainty about g will be less, on average, than
if we don’t know c. In other words, c will give us some
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information about g, if there is any statistical interde-
pendency. In equations, let’s define mutual information
I as:

I(c; g) = S[P (g)]−
∑

i

P (ci)Sn(ci). (53)

The crucial insight is that without any knowledge of c,
g will have the uncertainty S[P (g)]; with the knowl-
edge of c, the average uncertainty about g is smaller,∑

i P (ci)Sn(ci). The difference between these two quan-
tities is the mutual information, and Shannon has shown
that this is a unique assumption-free measure of any sta-
tistical dependency that does not make any assumption
about the form of the joint distribution P (c, g).
Mutual information is a number in bits, and can be

shown to be always positive. Algebraic manipulation of
Eq (53) quickly produces a more compact expression:

I(c; g) =
∑

i,j

P (ci, gj) log2
P (ci, gj)

P (ci)P (gj)
(54)

where P (ci) and P (gj) are marginal distributions of the
joint P (ci, gj). Note that the mutual information is a
single number, not a function, although it is convention-
ally written with the arguments in parenthesis, I(c; g),
to denote that it is information between c and g.
Mutual information has a number of very appealing

properties:

• It can be defined for continuous or discrete
quantities. Mutual information is a functional of
a probability distribution, and probability distribu-
tions are very generic objects. c and g could both
be continuous, or any one or both can be discrete.

• It is reparametrization invariant. Mutual in-
formation betwen c and g is the same than mu-
tual information between any one-to-one function
of c, f(c), and any one-to-one function of g, h(g),
that is I(c; g) = I(f(c);h(g)). In biological exper-
iments, this is a great asset, as we will soon see:
experiments often report, e.g. intensities or log-
intensities on the microarray chips or in FACS sort-
ing, and there is a lot of discussion about how this
data should be normalized and transformed prior
to any analysis. This is important because some
statistical measures of correlation, like correlation
coefficients, depend on it. Mutual information, in
contrast, is invariant to such reparametrizations of
the variables.

• It is symmetric. Mutual information tells us,
in bits, how much I learn about g if I know the
value of c. As is evident from Eq (54), I(c; g) is
symmetric with respect to the change in c and g,
i.e. I(c; g) = I(g; c). This means that I can equally
well learn about c by knowing the value of g.

• It obeys data processing inequality. Suppose
that g depends on c and k depends on g (but not
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FIG. 17 Interpreting the mutual information values. On the
left, the mutual information between c and g is 1 bit. This is
because both c and g have two “states” (each corrupted by
some noise), and the states are in a one-to-one relationship:
knowing which state c is in tells me about what state g is in. In
the middle, the connection between c and g is no longer trivial.
When c has low value, g can either be low or high. The only
information we have is that it is impossible for c to be high
when g is low. This yields ∼ 0.25 bits of information between
c and g. On the right, there are three possible states for c
that are distinguishable given the noise, and each maps into
a unique state for g. The mutual information is I ∼ log2(3)
bits.

directly on c), in some probabilistic fashion. In
other words, one can imagine that there is a Markov
process, c → g → k, where arrows denote a noisy
mapping from one value to the next one: c gives
rise to g and g to k. Then I(c; k) ≤ I(c; g), that is,
information necessarily either gets lost or stays the
same at each noisy step in the transmission process,
but it is never “spontaneously” created.

There is a number of powerful theorems relating to
mutual information which we will not go into here, but
the interested reader is referred to the classical text of
Thomas and Cover for details.
To summarize, Shannon has shown that there is a

unique, positive, assumption-free measure of statistical
interdependency of two variables c and g that is called
the mutual information and which is given by Eq 54.
This measure is zero if and only if the two variables are
statistically independent. It does not describe what kind
of interdependency there is between the two variables,
rather, it only quantifies how much of interdependency
there is, in bits.
Since this is a measure over probability distributions,

it is extremely generic. Before focusing on one in-depth
example in Section V, let’s first enumerate a number of
possible applications relevant to biology:
First, c and g could be expression levels of different

genes. The levels can be statistically correlated because
the genes are regulated by a common transcription factor,
because they regulate each other, or because their expres-
sion is modified coherently by some other cellular prop-
erty (such as volume change). Mutual information can be
used to measure the dependency between the two expres-
sion levels. In particular, in microarray experiments one
measures the simultaneous expression of many (possibly
all) genes, across a range of conditions, such as changes
in nutrient concentrations, pH, temperature etc. Then,
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we can construct a similarity matrix of K×K mutual in-
formation values between all K genes, computed across
all experimental conditions. This matrix measures the
degree to which the genes are coexpressed. Commonly,
correlation coefficients of log intensity values are used for
this purpose, but it has been shown that mutual infor-
mation can discover nonlinear dependencies, such as that
in Fig. 17, which the correlation measure will miss.

Second, in these lecture notes we have set up an ex-
ample where the transcription factor c regulates the ex-
pression of gene g. Computing the mutual information
between c and g then can answer, in a mathematically
precise way, an interesting question: “Are genetic regu-
latory elements binary switches (i.e. do they have the
capacity of 1 bit) or are they able to convey more than
1 bit of information, and if so, how much?” We explore
this in Section VII.
Third, one could ask about how strongly any DNA se-

quence, for instance that of a TF binding site, influences
the expression level of a reporter gene. This is an in-
teresting problem that is looking for a relation between
a short segment of DNA sequence of length L, $s, and
the expression level g. Using the usual measures of de-
pendency we might face practical difficulties because the
sequences live in a space of $s ∈ {A,C, T,G}L, whereas
the expression levels are real-valued measured quantities,
g ∈ 2. Since mutual information is defined on probability
distributions and P ($s, g) is a well-defined object, finding
I($s; g) is possible. We explore this in Section V.

Fourth, we could ask about the information between
the presence or absence of a given gene, or set of genes,
and the phenotype of the organism (Slonim et al, 2006).

Fifth, in visual neuroscience, neurons in the retina are
sensitive to spatio-temporal correlations of light; when
exposed to the preferred stimulus, the neuron might
spike. How much information does a spike carry about
the neural input? Again, answering this question re-
quires us to find statistical dependency between the stim-
ulus and a point object in time, such as a spike, and
I(spike; stimulus) is a natural way of quantifying this de-
pendency.

Sixth, one could use information as a measure over
discrete objects, such as sequences. For instance, how
much information does a single base-pair carry about
whether the region of the genome in which the base pair
is located is a coding vs noncoding region? How much do
pairs, or consecutive triplets of base-pairs carry about the
coding vs non-coding region? Another possible example
would be to compute the mutual information between
the sequence snippets of related organisms, I($s1,$s2), as
a measure of evolutionary distance.

B. Estimation techniques: an example

To be concrete, let’s focus on a real dataset. The data
was reported in Ref. (Sachs et al, 2005), where the au-
thors studied a MAP kinase cascade signaling network in

FIG. 18 Raw data of Ref (Sachs et al, 2005). The activation
level (grayscale) of 11 signaling proteins (vertical axis) was
recorded in ∼ 7000 single cells. Samples are collected into
consecutive blocks, for each of the 9 conditions (horizontal
axis).

human immune system cells. To this end, they designed
probes against specific phoshorylated (or otherwise acti-
vated) forms of 11 signaling proteins in the network; each
probe was tagged with a fluorophore of a different color.
Many cells were fixed and stained, and ran through the
FACS machine to obtain simultaneous readouts of the
activation levels of 11 proteins, for each cell. The mea-
surements were done in 9 conditions Ck, k = 1, . . . , 9,
and in each condition a sample of around ∼ 600 cells was
recorded. Conditions differed in the chemical environ-
ment that the cells were exposed to: in some conditions,
naturally occurring ligands were presented, while in the
others, artificial blockers or activators, specific for some
of the signaling proteins in the network, were applied.
For our purposes, the experiment provides us with a

dataset of ∼ 7000 samples, where each sample is a simul-
taneous recording of 11 activation levels, gi, i = 1, . . . , 11;
see Fig. 18.
Let us first quantify how correlated are pairs of ele-

ments in this signaling network, across all conditions pre-
sented; this is similar to the procedure that would be used
in microarray experiments. Figure 19 shows the pairwise
correlation coefficients using two different normalization
schemes. One immediate problem that we face is that the
correlation values strongly depend on the normalization
of our data. More problems, however, are revealed when
we look at the histograms and scatter-plots of the activi-
ties – Fig. 20 shows that the histograms P (gi) have very
nontrivial, multi-peaked structure, and the scatterplots
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FIG. 19 The 11 × 11 matrix of correlation coefficients be-
tween raw values reported in the experiment (left) and the
log-transformed values (right). Note that the two matrices
are significantly different. We also see that the activity of
each network element is (significantly, not shown) correlated
with most of the other elements.
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FIG. 20 The non-Gaussian nature of the data. On the left,
the histogram of the log-activity level of signaling protein g2
across all 9 conditions. We see 3 distinct “activation states”
as peaks in the distribution. On the right, a scatter plot,
across all conditions, of the simultaneously recorded levels of
g2 and g3, showing a very nonlinear dependence.

of pairs of activity levels reveal very non-linear depen-
dence.

Our first task will be to measure the pairwise depen-
dencies using the mutual information measure of Eq (54).
To compute the mutual information, the equation in-
structs us discretize both c and g into b bins, histogram
P (c, g) from the data (P (c, g) will be a b × b matrix),
and from there compute I(c; g) in a straightforward way
– we will refer to such direct calculation with binned and
sampled data the naive estimator with N samples and
b bins, and denote it by ÎN,b(c; g). Two problems, how-
ever, are in our way: (i) We need to discretize (bin) the
data and there is a question of where to draw the dis-
cretization boundaries to gain the best statistical power;
(ii) It can be shown that mutual information is a sensi-
tive statistic to compute; in particular, it gives a biased
estimate of the true value when evaluated on probability
distributions sampled from any finite dataset. This hap-
pens because the empirical probability, P̂ (c, g), that is
obtained by sampling, has bins with small (or even zero)
counts.

One of the most straightforward ways to correct for
this bias is the so-called direct estimation method, which
addresses both issues (i) and (ii) simultaneously. The

crucial realization was to derive the small-sample effect
on the naive estimator:

ÎN,b(c; g) = I∞,b(c; g) +
1

N
A(b) + . . . . (55)

This equation says that if we hold the number of bins b
fixed and change the number of samples, the naive esti-
mator and the true value (which we would get if the num-
ber of samples were infinite), differ by a bias that scales
as 1/N . We can use the equation as a prescription for
getting rid of the bias: if our true dataset is of size Ntot,
we can subsample the data at fractions of the total size,
for example at N = 0.7Ntot, 0.8Ntot, 0.9Ntot, 0.95Ntot,
many times, and compute an average naive estimator at
each fraction of Ntot. With these estimators in hand,
we can use linear extrapolation in 1/N from Eq (55) to
obtain an unbiased estimate of information with b bins,
I∞,b(c; g). What remains to be done, then, is to choose
a correct number of bins for discretization. With too
small a number, we will lose the structure in the joint
distribution – e.g. if one only discretizes into 2 levels, for
instance, fine scale details in P (g1, g2) of Fig. 20 might be
lost. If one discretizes into too many bins, however, then
the linear correction term in Eq (55) will no longer suffice
to counter the sampling problems, and our estimates will
be wrong. For a reference on direct estimation technique,
consult Ref. (Slonim et al, 2005).

Figure 21 documents the direct estimation procedure.
We see that as the number of bins b grows, we capture
more and more information in the data, and the slope of
the extrapolation line [and thus finite-size corrections of
Eq (55)] are increasing in size. If we used b ( 50 bins,
the extrapolation would break down and we would lose
control over information estimation.
If the data were inherently discrete, then the technique

is more straightforward: one only does the 1/N extrapo-
lation to correct for the sample size at the given number
of bins that correspond to the number of discrete levels
in the data.
Finally, we can apply the estimation procedure to the

MAP kinase signaling network dataset to extract the
11 × 11 pairwise mutual-information matrix, summariz-
ing the statistical dependencies between all pairs of ac-
tivities gi, gj , see Fig. 22. Interestingly, for example, the
mutual information analysis reveals that the pair (g6, g8)
has about 0.4 bits of mutual information, yet the pair-
wise correlation coefficient is only 0.019, signaling that
most of the statistical dependency is not linear.
There are many other ways to estimate mutual infor-

mation differing in how they handle the small-sample
bias, which is the biggest technical difficulty with esti-
mations of this sort; the naive estimators are very quick,
but resamplings necessary to handle the bias lengthen the
computational time considerably. Nevertheless, mutual
information has been used to compute pairwise similarity
matrices between all pairs of genes in high throughput ex-
periments (Slonim et al, 2005), and overall, this statistic
is gaining in popularity in life sciences.
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FIG. 21 The direct mutual information estimation procedure.
This is an example where we compute the information be-
tween the activity level of signaling proteins g1 and g2. At
each number of bins, b = 5, 10, . . . , 50 (different lines), one
subsamples repeatedly the whole dataset of 5400 samples into
70%, 71%, . . . , 99% of the samples, 500 times. For each frac-
tion of the data, 500 naive estimators ÎN,b are thus computed;
their mean and std are plotted as black points with error bars.
For each fixed number of bins b, naive estimates at different
fractions of the data N fall onto a line when plotted against
1/N . The linear extrapolations are shown in red, and the
extrapolation is from the finite dataset into 1/N → 0, i.e. to
the limit of infinite data, which is the intercept of the red line
with the vertical axis. As the number of bins is increased,
we get higher and higher information estimates, until they
start converging to the same value of I(g1; g2) ∼ 1.33 bits, at
b = 50 bins.

C. Generalizations of mutual information

Before concluding this lecture, let us discuss two gen-
eralizations of mutual information. The first generaliza-
tion extends the measure to include higher-than-pairwise
structure. Suppose that we have three interacting el-
ements, g1, g2, and g3. There are 3 pairwise mutual
informations that one can compute, I(g1; g2), I(g1; g3)
and I(g2; g3), describing pairwise statistical dependence.
However, there might be statistical dependencies be-
tween three elements of the network that no pairwise
measure can detect. The simplest example can be con-
structed if g1, g2, g3 are binary variables, related by
g3 = XOR(g1, g2), where the binary function XOR re-
turns 1 exactly when g1 and g2 are different, and 0 oth-
erwise; see Fig 23.

In order to detect this higher-order dependence, we
need an information-theoretic measure that generalizes
mutual information. This measure is called the multi-
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FIG. 22 A matrix of pairwise mutual information values
I(gi; gj), in bits (color), between pairs of activation levels of
signaling proteins in the MAP cascade. The direct estima-
tion procedure was used, with the maximal number of bins
b = 50, and extrapolation in Eq. (55) was used to correct for
finite sample size effects.
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FIG. 23 A synthetic dataset where 50 samples for g1 and g2
(top two rows) are drawn independently with probability 0.5
for being 0 or 1, and g3 = XOR(g1, g2). If one looks at any
pair (gi, gj), there is no pairwise dependence, because all 4
combinations 00, 01, 10, 11 happen equally often. However,
when one looks at the triplet (g1, g2, g3), there is a clear de-
terministic dependence of g3 on the g1, g2.

information, and is defined as follows:

I({gi}) =
∑

{gi}

P ({gi}) log2
P ({gi})∏M
i=1 Pi(gi)

, (56)

where the numerator contains the joint distribution over
M elements, g1, . . . , gM , and the denominator contains
the product of marginal distributions. Multi-information
captures all statistical structure between pairs, triplets,
up to the complete statistical correlation between all M
elements. While powerful, this quantity is usually very
hard to estimate because one would need to sample the
full joint distribution over M elements. We can, how-
ever, restrict ourselves to triplets of elements. For the
synthetic XOR example we would find that the multi-
information is 1 bit (because if g1, g2, g3 were completely
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random, uncorrelated binary variables, they would have
3 bits of entropy; however, only g1 and g2 are randomly
and independently drawn, while g3 is a deterministic
function of both, so the true entropy of the joint dis-
tribution is only 2 bits; this reduction of 1 bit is the
multi-information). In case of the MAP network data,
the full multi-information would require the 11 dimen-
sional joint distribution, but we could restrict ourselves
to triplets (gi, gj , gk) and ask about how much interde-
pendency there is in such combinations.

Up to now, we have been looking for statistical struc-
ture among {gi} irrespective of the conditions, C. We
could also ask about the mutual information between
the activation level of protein i and condition C, that
is, I(gi; C), using the estimation techniques already de-
veloped. When we consider such condition (or stimulus)
dependence, there is also a new set of statistical questions
that we can ask. For two signaling proteins, gi and gj ,
we can compute separately I(gi; C) and I(gj ; C), respec-
tively. But we could also ask about I({gi, gj}; C): how
much information does a pair (gi, gj) of two activation
levels together tell us about the condition C. In principle,
this can be more or less than the sum I(gi; C) + I(gj ; C).
We define the quantity R as:

R = I(gi; C) + I(gj ; C)− I({gi, gj}; C); (57)

when R is negative, the pair of activity levels together
is more informative about the condition than both lev-
els considered separately; (gi, gj) are said to be synergis-
tic. Alternatively, when R is positive, gi and gj are not
providing independent information about the condition
– they are redundant.

Synergy and redundancy are extensively used in neu-
roscience to ask how groups of neurons together encode
the stimulus (stimulus in neuroscience is analogous to
conditions C in our example), as compared to how single
neurons on their own encode the stimulus. In our MAP
kinase example, we find that pairs of activity levels pro-
vide redundant information about the condition. Further
details can be found in Ref (Tkačik, 2007).

D. Use and interpretation

Information theoretic measures, such as mutual in-
formation, multi-information, redundancy, synergy (and
others that we don’t discuss here, such as Kullback-
Leibler divergence, Jensen-Shannon divergence etc) pro-
vide a very powerful, assumption-free framework for dis-
covering statistical dependencies in the data. There ex-
ist systematic approaches that discover correlations, both
linear and non-linear, between pairs of elements, triplets,
quadruplets etc (Schneidman et al, 2003); we are usually
limited by the availability of data and run into sampling
problems for such higher-order dependencies, but in prin-
ciple they could be computed.

V. USING INFORMATION THEORY FOR INFERENCE:
TRANSCRIPTION FACTOR – DNA INTERACTIONS

In our toy example of transcriptional regulation we
have been assuming that transcription factors bind to
a well-defined “binding site” somewhere on the DNA.
But what distinguishes the particular binding site – a se-
quence of 10-20 nucleotides – from all other possible short
sequences in the genome? How does the TF molecule find
the correct binding site?
There is a substantial amount of existing work address-

ing each of the two questions which are stated more pre-
cisely below:
The “specificity problem” arises because the cor-

rect statistical mechanics problem for TF binding is not
only that of a single (specific) site being occupied or
empty, as schematized in Fig. 3. Instead of a single
site, there is really a large number M of sites on the
genome, and they have a distribution of binding ener-
gies ρ(E): most likely, the specific site is one of the best
binders (having the most negative E), but there might
also be some non-functional sites with low energies as
well as a huge number (millions for a prokaryote, or bil-
lions for an eukaryote) of spurious non-specific sites that
the TF molecule could bind weakly. Our partition func-
tion should reflect this: Z =

∑M
i=0 e

−β(Ei−µ), where the
sum is taken across all the sites in the genome (including
the specific site that we denote as having the energy E0).
The real question is as follows: how does the cell make
sure that the TF spends most of the time occupying the
(functional) binding site, and not sitting wastefully on a
large number of non-functional traps? Clearly, the bind-
ing energy to the specific site must be much stronger
than to the non-specific sites, E0 + Ei, i 3= 0. But
the sites only differ in their sequence of nucleotides $s,
so there must exist an “energy function” E($s) such that
E($s0) + E($si), i 3= 0. What are the energy functions for
real transcription factors?

The “search problem” arises when we realize that
even if equilibrium occupancies were to work out and the
specific site is occupied with larger probability than non-
specific sites, there remains the question of the speed of
equilibration. To equilibrate, TF molecules in the nu-
cleus they must sample various sites on the genome and
must therefore physically move from site to site on the
DNA. Because the translocation of TFs is driven by ran-
dom diffusion, this puts a computable upper bound on
how quickly the sites can be sampled and how quickly
the system can equilibrate. A lot of excitement was gen-
erated when it was observed that some transcription fac-
tors can find their sites faster than predicted given the
3D diffusion limit; more complex modes of TF translo-
cation were proposed, including sliding and hopping of
transcription factor molecules along the 1D contour of
the DNA. It seems that a combination of 1D and 3D dif-
fusion can reconcile the measured rapid TF search times
with the theoretical expectations (Slutsky et al, 2004).

Here we will focus on the first problem of specificity in
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TF-DNA interactions. In particular, we will discuss how
information theory can be used to infer the energy func-
tion, E($s), for a given transcription factor whose binding
has been probed in various high-throughput assays.

Why is the problem of DNA-TF interaction important?
If we want to ultimately understand genetic regulatory
networks, we need to know which transcription factors
bind where in the genome – in particular, which sets of
genes they are regulating. The latter question can be
answered if one knows the energy model for TF-DNA
interaction and is in possession of the complete genome
sequence. Whole genome sequences are available today,
so the difficult part of this program is learning the model
of TF-DNA interaction from various datasets, such as
protein binding microarrays, chromatin immunoprecipi-
tation assays, microarrays and high throughput sequenc-
ing techniques.

A. Energy matrices

We start by giving a brief overview of how the inter-
action between TF molecules and DNA has traditionally
been described and inferred from data. We continue by
pointing out the flaws in the traditional approach and
show how it can generate biased models of TF-DNA
interaction. We end by proposing a new information-
theoretic inference method that can avoid these problems
if enough data is available.
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FIG. 24 A schematic representation of the interaction be-
tween a transcription factor molecule (ellipse) and a site on
the DNA of length L nucleotides and sequence %s. The en-
ergy of this interaction E(%s) is given by an energy matrix εib
of dimension L × 4, here represented as the matrix in the
TF molecule. Each nucleotide s(α) = {A,C, T,G} in the se-
quence contributes independently to the total binding energy,
which is a linear function of sequence: E(%s) =

∑L
α=1 εαs(α).

At each position α we look up the base at that position
b = s(α) in the short sequence, then look up the correspond-
ing entry in the energy matrix εαb, and add it to the total
binding energy.

The simplest model of TF-DNA interaction is the
so-called energy matrix model, shown in Fig. 24.
In this model, TF binds short sequences $s =
{s(1), s(2), . . . , s(L)} of length L on the DNA. Each base
pair in a short sequence, s(α) = {A,C, T,G}, contributes
independently to the total binding energy. These energy

contributions are parametrized by the energy matrix εαb
of dimension L × 4, where each entry in the matrix at
position i specifies how much energy is contributed by a
particular base b = s(α) at that position, as shown in
Fig. 24.
This independent energy matrix model is likely not lit-

erally true, but the number of free parameters L× 3 can
be small enough so that reasonable energy matrix mod-
els can be fit from available data14. Models that include
higher-order contributions to the energy are more realis-
tic, but the number of parameters explodes. Moreover,
the simple model has had a number of successes in pre-
dicting TF binding sites, so we adopt it here.

B. Connection between energy and position weight
matrices

When no high-throughput experiments were available,
the primary data that could serve as input for inference
of energy matrices were lists of known and experimen-
tally verified binding sites. Frequently, these lists were
incomplete, both because it was time-consuming to probe
many candidates, and because the experimentalists pre-
ferred to set stringent criteria for a “true” site and thus
avoid the controversial issue of possible weak, but func-
tional, sites.
Suppose a list of M known binding sites, {$si}, i =

1, . . . ,M , is given. Then, there exists a concise summary
of TF sequence preference known as the position weight
matrix, or PWM:

wαb =
1

M

M∑

i=1

δ(si(α) = b), (58)

that is, the PWM is simply a frequency table of how often
a particular base b appears at position α = 1, . . . , L in
the set of known binding sites. In a seminal paper, Berg
and von Hippel have shown that under certain conditions
there exists a simple relation between the PWM of a
given transcription factor, and its energy matrix (Berg
et al, 1987):

εαb = − logwαb, (59)

up to the arbitrary energy offset in each row of the en-
ergy matrix, and the overall unit of energy (scale factor).
Since this paper has appeared, the connection between
PWM and energy matrix has become the cornerstone of
inferring energy matrices: first, a list of known (putative)
binding sites is produced, a PWM is extracted from it
and the energy matrix is constructed using the equality in

14 One can subtract a constant from each column of the matrix
without affecting the binding because energies are significant
only up to an overall additive constant factor. This is why the
total number of free parameters is not L× 4, but L× 3 instead.
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Eq (59), and the list of putative binding sites is then usu-
ally refined in some iterative procedure that involves ex-
perimental data. Even when the experimental techniques
progressed and the data was not restricted to short lists
of verified binding sites, most inference procedures still
relied on the Berg-von Hippel equality. Moreover, PWM
slowly emerged as the relevant object that characterizes
TF-DNA interaction, together with the picture that one
must look for statistical signals in the promoter regions
of the genes that signify sequences different from some
null background expectation for what a non-functional
sequence should look like. This “statistical view,” which
regards TFs as objects that look for “patterns in the se-
quence,” can be deceiving, if one forgets that TFs are
not algorithms, but physical objects, and therefore must
be described by physical quantities: energy of DNA-TF
interaction is such a quantity, while a PWM is not.

What are the assumptions that must be true in or-
der for Eq (59) to hold? (i) The true binding sites are
embedded into genomic background which is large and
where bases are used independently at each site; (ii) The
true binding sites have sequences that are as random as
possible (maximum entropy), with the only constraint
that the average binding energy of the sites in the known
sites list is fixed, Ē. In other words, this assumption
states that the only distinguishing feature of functional
sites is that their binding energy is approximately Ē, pre-
sumably lower than the other nonfunctional sites in the
genome; (iii) The concentrations of TF are not such that
some sites would be fully saturated; (iv) The known sites
list is complete, or at least an unbiased sample of the true
binding sites.

What role do these assumptions play in combination
with modern data sets when inferring TF energy ma-
trices? Figure 25 shows data from one high-throughput
experiment that can probe simultaneously the binding
of a single transcription factor to all intergenic regions in
yeast (see figure caption for details). Usually the analysis
proceeds by thresholding the dataset to isolate sequences
in which there are binding sites (true positives) and to
minimize those sequences mingled in that do not have
a binding site yet pass the threshold (false positives).
Data above threshold is retained, while data below it is
discarded. With the data above threshold in hand, some
model is assumed that links the direct experimental read-
out (e.g. the light intensity in the PBM chip) with the
putative binding of the transcription factor somewhere
in the corresponding intergenic region. Often, an initial
guess will be made for the energy matrix, which will then
be scanned across the sequences passing the cut to iden-
tify possible ‘hits’ in those regions, i.e. sites of length
L that score well with the assumed energy matrix. The
predicted hits will give rise to predicted light intensity,
which can be compared to the true intensity, and an up-
date in the energy matrix guess can then be made. Most
often, the iterative step will make use of Eq (59) to im-
prove the guess of the energy matrix.

Our motivation for devising a new method for inferring

Figure 2: Non-gaussian intensity ratios. (a) Histogram of Abf1p PBM LIRs fromMukherjee
et al.’s data. (b) Histogram of corresponding intensity ratios given by exponentiating these
LIRs (using base 2). Inset shows a zoomed-in view of the the highlighted region of the tail.
The green line in each plot indicates the cut Mukherjee et al. used to delineate putatively
bound regions.

Figure 3: EMA Likelihood analysis does not over-fit Mukherjee et al.’s Abf1 PBM data.
(a) and (b) show the mean matrix elements determined by MCMC sampling using two
disjoint halves of the data. (c) Corresponding χ2 consistency p-values. No elements have
Bonferroni corrected p-values < .05.
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FIG. 25 Experimental results from PBM (protein-binding-
microarray) experiments of Mukharjee et al (Mukherjee et
al, 2004). In PBM assay, intergenic double-stranded DNA
of yeast was spotted onto the array. Transcription factor of
interest, Abf1p in this case, is introduced to the array and
left to bind; there should be higher probability of binding
somewhere in those intergenic regions that contain the actual
Abf1p binding sites. The TFs are fluorescently tagged. Each
spot in the array, corresponding to one particular intergenic
region in yeast, therefore provides a light intensity readout
related to whether Abf1p is bound somewhere in that region
or not. In this plot, the histogram of log light intensities for
every spot in the PBM chip is shown, together with the ex-
perimentalist’s stringent cutoff (green vertical line) that sep-
arates true positives (intergenic regions with TF bound) from
the rest; the cutoff was chosen to minimize the amount of
false positives.

TF-DNA interactions was based on the following obser-
vations about the existing approaches:
(i) The assumptions underlying the Berg-von

Hippel equation that links PWMs with energy
matrices might not hold.
In particular, the genomic background is not always

simple, as has been amply demonstrated by failed at-
tempts to identify transcription factor binding sites in
Plasmodium falciparum, the malaria parasite; this para-
site has non-coding regions with a lot of statistical struc-
ture, including complicated repeats, and simple models of
genomic background fail to capture these dependencies,
leading to a failure in algorithms that exploit Eq (59) to
search for binding sites (Elemento et al, 2007). Moreover
the concentration of TFs in the experiment may be satu-
rating for some sites, which is problematic for the original
Berg-von Hippel formulation, but has been addressed by,
e.g. Ref (Djordjevic et al, 2003).
(ii) Discarding most of the experimental data

(e.g. measurements that lie below the threshold
of light intensity in the PBM example) is waste-
ful.
The experimental observation that the TF does not

bind in some intergenic region is in fact as informative as
the observation that it does bind in certain other regions.
In other words, these “negative” samples inform us about
what the energy matrix cannot be (because with a wrong
model, we could predict binding in those regions that in-
deed do not show any binding experimentally), and thus
are informative about the model as well.
(iii) We don’t know the “error model” of the

experiment. For a principled, unbiased inference of
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any model from the data (including TF energy mod-
els), we would have to write down the likelihood of the
observed data given the model, P (data|model). To do
proper Bayesian inference, we would then maximize this
likelihood with respect to the model parameters (e.g. the
energy matrix)15. However, in most of the experiments,
we have no idea about what form the error model – the
probability P – has. That is because experiments such
as binding arrays, microarrays etc usually involve many
complicated biochemical and detection steps, such as hy-
bridization, washing, sonication etc, and therefore there
is no principled way of writing down the probability of
raw experimental readout (i.e. light intensity) given that
the TF is or is not bound. Without the knowledge of
P and the subsequent inability to do proper Bayesian
inference, most researchers have resorted to ad hoc ap-
proaches, such as setting thresholds. Moreover, these
ad hoc approaches usually contain many algorithmic de-
tails, involving data normalization and representation
(e.g. does one analyze light intensity, or log light inten-
sity), that can strongly influence the results. We would
like to reexamine the premise that unbiased inference is
impossible without the explicit knowledge of P .
(iv) Analysis of the same TF using different

methods often gives inconsistent results.

1 (i.e., are predicted to be bound) in both genomes: of the 676
S. cerevisiae sites with energy ! 1, a total of 501 (74%) have an
S. bayanus ortholog whose energy also lies ! 1. By contrast, sites
with energy " 1 in either genome tend to have orthologs with
highly randomized energy. In short, the large majority of align-
able sites predicted to be bound by our models have strongly
conserved putative energies. The fact that our models are found
directly from in vitro binding data provides a compelling case that
they also describe the free energy of Abf1p–DNA binding in vivo,
and that this binding energy plays a major role in determining
which sites have biological function.

Next, we performed a similar analysis of Lee et al.’s ChIP–chip
data (3) to determine whether it gives a description of Abf1p
consistent with that obtained from the PBM data. In these
ChIP–chip experiments, TFs were cross-linked in vivo to their
binding sites, after which TF-bound fragments of DNA were
isolated, amplified, labeled, and hybridized in competition with
reference DNA to a ssDNA microarray of yeast intergenic
regions. The enrichment observed in each microarray spot was
characterized by an ‘‘X-statistic’’ based on the single array error
model of Hughes et al. (14). Assuming a Gaussian distribution
for these X-statistics in the absence of TF binding, Lee et al.
reported an enrichment P value for each region.

We assigned these probed sequences to z-bins according to
their P values (equivalently, according to their X-statistics).
MCMC analysis then gave an ensemble #ChIP of 4 $ 104 matrix

models. Results of a single-ensemble analysis of #ChIP were
similar to those of #PBM (see SI Text and SI Figs. 10–14). Note
that, by integrating over all possible error models, we avoided
having to model the noise contributions from each individual
step in the ChIP–chip protocol. We also avoided having to
estimate in vivo contributions to the experimental noise, such as
the fraction of valid binding sites likely to be obscured by
chromatin.

Although the ChIP–chip and PBM results are quite similar,
the energy matrix elements derived from #ChIP are systematically
larger than those of #PBM. Our procedure, though, produces
energy matrices artificially scaled so that the energy cutoff is
equal to 1. Thus, when comparing ensembles, we are free to
rescale the matrices in one ensemble so as to bring them into
accord with those of the other. The resulting difference between
the rescaled cutoffs has a natural interpretation: binding site
occupancy, which we approximate by a step function at the
energy cutoff, should vary with TF concentration and may well
differ between experiments; the energy matrix itself, on the other
hand, reflects an intrinsic property of the TF molecule that
should, in principle, not vary between experiments (if other
factors, such as ion concentration and pH, are kept at similar
levels). In the case at hand, we found that rescaling the #ChIP
energy cutoff to 0.75, while keeping the #PBM cutoff at 1, brought
the #ChIP energy matrix elements into close agreement with
those of #PBM. Fig. 3 a and b illustrates this close agreement
between the mean matrix elements in the two ensembles. Fig. 3d
provides a direct comparison of the #ChIP and #PBM distributions
for each matrix element. In most cases, values that could
plausibly have been drawn from either the #ChIP or #PBM
distribution can be identified (illustrated in Fig. 3d Upper Inset,
which shows the raw #ChIP and #PBM histograms for the orange-
circled matrix element in Fig. 3 a and b). Although the two
histograms are not identical, they overlap enough that a matrix
element value consistent with both distributions can be found.

In SI Text we argue that a simple !2 test provides a valid way
of quantifying such consistency. The resulting !2 P values for
each matrix element are shown in Fig. 3c, with lower P values
corresponding to poorer consistency between ensemble distri-
butions. There are a few matrix elements for which #ChIP and
#PBM give inconsistent distributions by this test (the red and

Fig. 3. Comparison of #PBM and #ChIP parameter distributions. (a) Mean
values of rescaled matrix elements in #ChIP. (b) Mean matrix elements in #PBM

(same as Fig. 1a). (c) !2 P values quantifying the element-by-element consis-
tency of the #ChIP and #PBM distributions. (d) Mean and rmsd uncertainty of
each matrix element according to the #PBM (blue) and rescaled #ChIP (red)
distributions. Elements are arranged from left to right in order of increasing
mean. (Insets) Raw MCMC histograms show the values obtained for the matrix
elements circled in a–c and highlighted below each Inset in d. The #ChIP matrix
element distribution (Lower Inset) has most of its weight at precisely 0; the
corresponding histogram has been truncated at this bin.

Fig. 4. EMA likelihood analysis leads to compatible binding site predictions
from different experimental data sets, whereas the more standard method of
thresholding the experimental signal leads to substantial disagreement. (a)
The 20-bp intergenic sites in S. cerevisiae having #ChIP HF " 50% (red) are a
nearly perfect subset of those with #PBM HF " 50% (blue). (b) In contrast, the
intergenic regions selected by Mukherjee et al.’s (4) LIR threshold on PBM data
(blue) overlap poorly with those selected by Lee et al.’s (3) (P value threshold
on ChIP–chip data (red). (c and d) The thresholds chosen by the experimenters
are indicated by the green lines on the experimental LIR histogram of PBM
data in c and on the X-statistic histogram of ChIP–chip data in d.
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Abf1p 2 expts
yeast

PBM & ChIP

FIG. 26 Comparison of experimental results about the bind-
ing of Abf1p in yeast using two assays, protein binding mi-
croarrays (PBM) from Ref. (Mukherjee et al, 2004), and chro-
matin immunoprecipitation (ChIP chips) from Ref. (Lee et al,
2002). In the bottom, the raw experimental results are shown
with the thresholds determined by the experimentalists. The
circles show the number of bound regions identified by the two
experiments along with their intersection. Figure reproduced
from Ref. (Kinney et al, 2006).

As Fig. 26 shows, despite best efforts of the experimen-

15 More precisely, we could include a prior and maximize the poste-
rior, which would be the really correct way of doing things, but
this does not change the gist of our discussion.

talists to select regions that are true positives, the inter-
section of regions declared bound by PBM and ChIP-chip
experiments is rather low. While such inconsistent results
are not rare in the field, it is not clear how to interpret
the inconsistency: as the experimental imprecision, dif-
ference in experimental conditions (including the state of
the yeast culture), biased inference of the bound regions,
biological noise, etc16.
(v) We would like to put proper error bars on

any inferred model.

In a paper by Kinney et al (Kinney et al, 2006), we
argued that some of these problems are related: for in-
stance, if we could compensate properly for our lack of
knowledge about the error model, perhaps the inferred
binding sites from different experiments could be made
consistent; likewise, if we did not need to assume any-
thing about the statistics of the background sequence,
perhaps the existing experiments would reveal binding
sites in Plasmodium parasite. In the next section, we
present an information-theoretic approach to modeling
transcription factor – DNA interactions that will address
some of these concerns.

C. Mutual-information based inference of TF energy
matrices

We start by representing data from a typical high-
throughput experiment in a new form. Suppose that a
high-throughput experiment probes sequence fragments
$si. These fragments can be longer than the suspected
binding site size, which we assume is of length L; for ex-
ample, sequence fragments $si could be intergenic regions
in yeast, as in Ref. (Kinney et al, 2006). We don’t know
where in these sequences the binding sites are, if they are
present at all, or how many binding sites there might be
for the TF of interest.
The experiment provides us with a raw experimental

readout that corresponds to each intergenic region. In
protein-binding microarrays, this is the light intensity
level that is correlated with the probability that a flu-
orescently tagged TF is bound in that intergenic region.
Similarly, we can use the ChIP arrays. But the frame-
work is more flexible: any quantity, either continuous or
discrete, that is experimentally accessible and is thought
to correlate with the binding of TF of interest, may be
used; this in principle includes a combination of such
measured quantities. To be concrete, consider a set of mi-
croarray experiments where expression levels of genes are
probed at many different conditions. These results are
then used as input to clustering, and genes are grouped
into co-regulated clusters. For example, there is a group

16 Generally, playing with the thresholds in order to maximize the
intersection does not work well either.
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of genes that is determined by clustering to be in group
G. We can now assign to every intergenic region a value
0, if the corresponding downstream gene is not in G, and
value 1, if the corresponding gene is in G. Instead of
PBM or ChIP experimental data, in this case we would
use the result of the clustering partition as the variable
(binary in this case) that correlates with the presence or
absence of a TF binding site.

Before we proceed, we will bin (or discretize) the data
into a number of discrete bins, if the data is continuous.
This discretization is in principle arbitrary, and for best
results one should make a tradeoff between increasing the
number of bins (to increase the resolution of the method)
and the sample size (so that the number of samples in
each bin is large enough). In PBM experiments, for in-
stance, the log light intensity levels are discretized into
50, 100, . . . , 200 bins (to show that the results will not
depend on this discretization). The bins group together
log light intensities that are similar. We will use this dis-
cretized data to estimate mutual information; as shown
in Section IV, mutual information is insensitive to mono-
tonic transformations of data, and this is exactly what
we want – our inference will be insensitive to whether we
use log light intensity, raw light intensity, or any nonlin-
ear function thereof. We have also mentioned that in the
limit of large enough data set, the way we discretize does
not influence the computed mutual information, so our
method is robust with respect to this choice17.

To summarize, the input for our analysis will be pairs
of (sequence, data bin), where sequences may or may
not contain binding sites for the TF of interest, and the
data is any experimentally determined quantity that is
though to have a statistical dependence with the pres-
ence or absence of TF binding sites. In particular, af-
ter the discretization, our analysis does not even require
the raw data values any longer, just the data bin into
which the data was assigned on discretization. Let us
denote the input data D mathematically as K pairs in-
dexed by i = 1, . . . ,K pairs: D = {($si, zi)}, where $si are
the sequences potentially containing the binding sites,
and zi are the (discrete) bins associated with those se-
quences and summarizing the experimentally measured
values that correlate with TF binding.

We now explain the core of the argument on which
our inference is based. We assume that the experimental
results zi are some unknown function of the sequence
si, but the statistical dependence between the two can
only be established through binding energy E of TFs to
sites in the sequence si. Suppose that there are many
subsequences in si of length L, where the TF could bind.
If I knew the correct energy matrix ε for the TF, I could
evaluate the energy of the TF to bind onto each site in
$si. In the simplest case, I could declare that if any of

17 In practice, we do need to worry about the small-sample effects,
but in cases that will be discussed these can be addressed.

these binding energies is below some threshold, the TF
will bind in that intergenic region (at least once), and I
would declare that intergenic region bound, xi = 1. If
there is no such sequence of length L in $si, then I would
declare the intergenic region unbound, xi = 018.

Formally, the argument we are making can be repre-
sented as follows:

$si → xi = f(E($s, ε)) → zi, (60)

that is, the sequence determines the energy of binding
(that depends on the energy matrix ε which we would like
to infer), and the energy determines whether the region is
bound or not xi = 0, 1; that alone determines the exper-
imental data bin zi reflecting the measurement. There
is no other statistical dependence between the sequence
and the experimental data, on average, than through the
binding energy19!

With these remarks in mind, a typical representation
of a dataset might look as shown in Fig. 27.

18 The details of how to deal with multiple bound sites in the same
region, or whether to use a hard threshold to declare a site being
bound or a soft threshold where “being bound” is a real num-
ber denoting probability, can be looked up in Ref. (Kinney et al,
2006) and its supplement. Interestingly enough, if mutual infor-
mation is used to infer the energy matrices ε, the matrices will
be largely independent of these assumptions. Here, concretely, a
simple rule was used: apply ε to any site of length L within the
region $si. If the energy of binding is favorable, i.e. below thresh-
old Θ, declare that site bound, and declare the whole region
bound, xi = 1. If none of the energies is below the threshold,
the region is unbound, xi = 0. The matrix ε can only be deter-
mined up to a scale, i.e. εib and λεib, where λ is a positive scalar,
are both equally good guesses (in this setup it can be shown that
the experimental data cannot predict the absolute scale of the
matrix in physical units of, say, joules). We can get rid of this
arbitrariness by fixing the threshold for binding, Θ = 1.

19 In each particular sequence, there might be other statistical de-
pendencies, such as binding of other transcription factors, chro-
matin influences etc, but those unobserved influences will act
as noise in our inference. Since we are not assuming any noise
model, they should not bias the inferred energy matrices.
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Intergenic r. 
i

At least 1 
seq bound 

xi

Exp’t bin 
zi

1 0 12

2 0 41

3 1 205

4 0 12

5 1 187

6 0 16

7 0 12

... ... ...

5812 1 241

FIG. 27 An example dataset for inferring the TF energy ma-
trix. Intergenic regions in yeast are ordered, i = 1, . . . , 5812.
If we make a guess at the energy matrix ε, we can decide
whether each intergenic region is bound or not (see text),
and assign xi = 0, 1 to each region. In addition, each re-
gion has produced some experimental readout, that has been
discretized and so each region is assigned to one of the bins
zi = 1, . . . , 250 (maximum number of bins is 250 in this ex-
ample). The table illustrates that there is some statistical
dependence between the region being bound (xi = 1) and
being assigned into a bin corresponding to e.g. higher light
intensities on the PBM chip (higher corresponding bin num-
ber zi). This table can be constructed if some energy matrix
ε is assumed, because xi is a function of sequences %si and ε.

If the experimental result depends only on binding, and
the binding depends on the sequence through binding en-
ergy alone as in Eq. (60), we can formulate the following
inference principle:

ε∗ = argmaxεI (xi(ε, $si); zi) , (61)

where ε∗ is the energy matrix that we are looking for,
and argmax is returns that ε that maximizes the mutual
information I. Let us now parse this equation in detail.

We believe that the experimental results {zi} should
be maximally dependent on whether the corresponding
regions are bound or not, {xi}. To characterize the full
statistical dependency without making any assumption
about the probability distribution P (zi|xi), we compute
the mutual information I(xi; zi). Remember that this
independence of any error model was one of our ini-
tial motivations. From a table like the one in Fig. 27,
I(xi; zi) can be directly computed, by simply accumulat-
ing the joint probability distribution P (xi, zi) across all

K pairs (sequence, data) [K=5812 in the example], and
using Eq. (54) to compute the information20.

Information I(xi; zi) can be computed for any choice
of the energy matrix ε. We should now search the space
of all energy matrices (3×L parameters) for that matrix
ε∗ that will maximize this information. While nontrivial,
this search can be implemented using Metropolis Monte
Carlo (MMC) methods. This search does not only yield
the best matrix ε∗, but an ensemble – a solution set –
of matrices, all of which explain the data almost equally
well and yield the same value for information I. We will
not go into the details here beyond stressing that since
we end up with a set of good solutions, we can compute
how well constrained the energy matrix elements εαb are
and put rigorous error bars onto them.

How do the results look like for the yeast Abf1p ex-
ample inferred from PBM data? Figure 28 is reproduced
from Ref. (Kinney et al, 2006), and it shows the inferred
energy matrix and the error bars for each of the ma-
trix elements. We see that most of the energy matrix
elements are constrained very well by the data; a pat-
tern emerges where Abf1p makes contact to the DNA in
two regions, with small (but still significant) energy con-
tributions from the basepairs between the two regions.
These results are broadly consistent with, but more pre-
cise than, previous energy models for Abf1p.

Figure 29 shows that the resulting energy matrices un-
ambiguously split all intergenic regions into those that
are bound and those that are not. More surprisingly, as
part of our results (not as an assumption!), we also learn
P (xi|zi), the probability that the site is bound given the
experimental data bin, zi; this quantity is related to the
error model P (zi|xi), which we did not want to assume
a priori. This curve has a sigmoidal shape, showing that
no single hard threshold (as has traditionally been done)
will perfectly separate regions that are bound from those
that are not. This finding also has biological implica-
tion – it is saying that there are both strong and weak
binding sites, and some of the weakly bound sites are
mixed into experimentally determined bins with regions
that truly don’t contain binding sites. Lastly, Fig. 29c
shows that our inferred binding energies are conserved
across two yeast species despite significant difference in
aligned sequences due to evolutionary distance.

We find many more binding sites than the number in-
ferred by Ref. (Mukherjee et al, 2004), where they set a
very strict experimental threshold to avoid false positives.
Interestingly, we can run exactly the same analysis on the
ChIP data by Lee et al (Lee et al, 2002); we find that the
inferred binding sites from two different experimental as-
says performed by two separate experimental groups can
be made consistent, unlike the discrepancy observed in
direct region comparison, see Fig. 30. We think that

20 This can be corrected for sampling errors, as discussed in Sec-
tion IV
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than giving the full range of parameters consistent with given
observations. In this article, we address these problems and in
the process develop a simple but general method for analyzing
TF–DNA binding data.

Our basic method is to use experimental data to specify a
probability distribution on the parameters of a model of the TF’s
SDBE. By model we mean a function, involving parameters
denoted collectively by !, that takes a potential binding site
sequence as input and gives an energy as output. The distribution
on models is then used to make predictions (e.g., for binding site
energies) that have mean values and variances. We think of the
data as a set of values {zi}i!1

N (such as observed fluorescence
intensities) obtained for the N regions of DNA probed by the
experiment. Because of experimental noise, particular model
parameters ! will produce the observed data with a probability
p({zi}"!) (also referred to as the ‘‘likelihood’’), which can be
computed if the statistics of the noise are known. Given a prior
distribution p(!) on allowable model parameters, we can use
Bayes’ theorem to turn this into a posterior distribution on model
parameters, given the observed data:

p#!!$zi%& " p#$zi%!!&p#!&. [1]

Unfortunately, traditional methods of computing p({zi}"!) re-
quire a quantitative model of the experimental noise (or ‘‘error
model’’), something that is not usually available; moreover, using
the wrong error model will generally lead to incorrect inferences.
To deal with this problem, we take the further Bayesian step of
averaging p({zi}"!) over the space of all possible error models to
obtain an ‘‘error-model-averaged’’ (EMA) likelihood that can be
explicitly evaluated and used in Eq. 1. Our major result is that
this relaxed version of likelihood still allows real data to con-
strain energy models: in effect the data are used to determine
both the energy model and the error model.

To make predictions by using p(!"{zi}) we use a Markov chain
Monte Carlo (MCMC) algorithm to generate a large ensemble
of models ' ! {!1, !2, . . . ,!T}, sampled according to this
distribution. ' is then used to give concrete probabilistic answers
to questions about TF binding behavior conditioned on the
experimental data. We demonstrate this approach on ChIP–chip
(3) and PBM (4) studies of the yeast TF Abf1p and find that the
data determine the parameters of simple binding models with
remarkably low statistical uncertainty. This finding contrasts
with the commonly held view that high-throughput experiments
can give only rough characterizations of TF specificity. Although
the microarray data are noisy, the sheer number of regions
probed, along with the large amount of DNA sequence in each
region, allows for a precise characterization of SDBE. We have
found the same to be true for some other broad-acting yeast TFs
(data not shown).

Results
We first present the results of a likelihood analysis of the PBM
data of Mukherjee et al. (4) for the yeast TF Abf1p. In this assay,
epitope-tagged TFs were bound directly to dsDNA spotted on a
glass microarray and then visualized with fluorescent antibodies.
The fluorescent intensity observed for each of the (6,000
microarray spots (representing virtually all of the intergenic
regions of Saccharomyces cerevisiae) was then normalized by the
amount of DNA in each spot. After averaging the data over
replicates and further processing, Mukherjee et al. reported
log intensity ratios (LIRs) for N ! 5,812 of these intergenic
sequences.

Our goal was to find models of Abf1p–DNA binding that were
likely to have produced these LIRs. In Methods, we derive an
expression (Eq. 3) for the EMA likelihood of different energy
models for a given set of binding assay data. Because this
equation applies to discretized data, we began our analysis by

binning the N intergenic sequences {si}i!1
N according to their

LIRs into ‘‘z-bins.’’ We chose 20 sequences per bin, for a total
of m ! 292 bins. The bin size is, of course, arbitrary, but the
results of our analysis were found to depend only weakly on this
choice (see SI Text and SI Fig. 6). Each sequence si was thus
assigned an integer zi identifying the bin into which it was placed.
This set of intergenic sequences {si} and their corresponding bin
numbers {zi} constituted the sole input to the rest of our analysis.

The parametrized energy model we chose for Abf1p was a 4 )
20 ‘‘energy matrix’’ where each base in a site of length 20
contributes additively to the overall binding energy. We use this
energy matrix to classify sites as ‘‘bound’’ (having a substantial
TF occupancy in the experiment) if their energies lie below some
threshold #; otherwise they are classified as ‘‘unbound.’’ The
energy baseline was fixed by setting the lowest element in each
column to zero, and the overall scale was fixed by setting # ! 1.
The elements of this matrix are the model parameters !. See SI
Text for more details.

A specific energy matrix classifies each region as bound if it
contains at least one bound site, and otherwise classifies it as
unbound. The numbers of bound and unbound regions in each
z-bin suffice to calculate the posterior probability of the matrix
p(!"{zi}) using Eq. 3 of Methods. We performed multiple MCMC
runs on the Abf1p data of Mukherjee et al. (4) to obtain an
ensemble of 4 ) 104 matrices (which we denote by 'PBM)
sampled according to this distribution. Appropriate tests were
used to verify MCMC convergence (see SI Text and Fig. 7).

Fig. 1. PBM data determines Abf1p energy model parameters with surpris-
ing precision. (a and b) Mean and rmsd of energy matrix elements over the
'PBM ensemble of Abf1p models. All-blue columns contribute little to TF
binding specificity. Overall, these matrices match the known Abf1p motif
RTCRYNNNNNACG well. (c) Scatter plot of matrix element means versus rmsds:
all rmsds are small compared with the binding cutoff of 1. (Insets) Marginal
distributions of two representative matrix elements, circled in corresponding
color in a and b.
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FIG. 28 Results for Abf1p energy matrix in yeast inferred
from PBM data from Ref. (Mukherjee et al, 2004); figure re-
produced from Ref. (Kinney et al, 2006). Panel a) shows the
energy matrix εαb, with hotter colors indicating larger energy
matrix contributions, and darker colors smaller contributions.
Panel b) shows the error bars on each of the energy matrix
elements, σεαb . Panel c) plots the matrix elements vs their
errorbars (y axis), and also shows in the two example insets,
the distribution of values for two particular energy matrix
elements in the solution ensemble found by MMC optimiza-
tion. Here we looked for an energy matrix of length L = 20
basepairs. The search can be repeated for L = 14, 16, 18 to
show that the core elements remain unchanged, and the same
energy matrix is found each time. The inference can also be
performed by splitting the total dataset (5812 sites) into ran-
dom halves, and showing that on each half consistent energy
matrices are found, so that there is no overfitting [not shown,
c.f. Ref. (Kinney et al, 2006)].

this finding illustrates that proper inference can lead to
more complete and consistent identification of binding
sites, including the weak ones. In conclusion, let’s com-
ment on why mutual-information inference was able to
provide us with good energy matrix models despite our
inability to write down the likelihood (or error model)
P (data|model). The answer lies in the observation that
with enough data, one can simultaneously infer this error
model along with the energy matrix. There is a formal
way to show the connection between mutual information
inference of Eq. (61) and the Bayes maximum likelihood
inference, and we point the reader to details of Ref. (Kin-

Our results are generally in line with the qualitative motif
RTCRYNNNNNACG known for Abf1p (12). However, inspection
of !PBM shows that the parameters of the Abf1p energy matrix are
determined with remarkable precision. The mean and rmsd of each
matrix element across all models in !PBM are shown in Fig. 1 a and
b. A scatter plot of the same data is given in Fig. 1c along with the
marginal !PBM distribution for two representative matrix elements.
Matrix elements that differ significantly from zero generally have
uncertainties much smaller than their means, and their distributions
have a roughly Gaussian shape (Fig. 1c Upper Inset). Other elements
are consistently assigned the lowest energy in their respective
columns and are thus set by our normalization to be precisely zero
in much of the ensemble (e.g. Fig. 1c Lower Inset). The matrix
elements are determined with a degree of precision that makes it
possible to see meaningful structure even in the center of the
binding site, in positions that contribute little to overall TF speci-
ficity. That this precision is not an artifact of overfitting was verified
by showing that parameter distributions derived from disjoint
halves of the data provide consistent predictions for the energy
matrix. We also verified that different choices for the matrix width

led to consistent parameter distributions (see SI Text and SI Figs.
8 and 9).

The model ensemble !PBM provides a direct way of predicting
putative binding sites. For any 20-bp sequence of DNA, we can
determine the fraction of models ! in !PBM that ‘‘hit’’ that site
(i.e., assign it an energy " 1). Fig. 2a histograms this ‘‘hit
fraction’’ (HF) for every possible 20-bp site in the intergenic
DNA of S. cerevisiae [as defined in Kellis et al. (12)]. The plot
shows that the distribution of HFs is strongly bimodal (1,469 sites
have HF # 50%, whereas 1,182 of these also have HF # 90%).
We adopt HF # 50% as a plausible criterion for predicting a site
to be bound.

Fig. 2b plots the mean fraction of sequences in each z-bin
declared to be bound by models in !PBM against the mean LIR
of those sequences. Error bars show the variation in these
predictions across different models in !PBM. A histogram of the
actual measured LIRs is shown in the background. The most
striking feature of this plot is the sigmoidal relationship between
model predictions and measured LIRs, showing a rapid transi-
tion from mostly not bound to mostly bound sequences at the
beginning of the heavy tail of the LIR distribution. Whereas its
general shape is exactly as expected, this outcome is in no way
predetermined: Eq. 3 places no a priori weight on models that
make similar predictions for sequences in neighboring z-bins or
that declare sequences with large LIR to be bound. The con-
sistency between the shape of this scatter plot and our physical
expectation is an independent confirmation of the validity of
EMA likelihood.

The Abf1p models in !PBM appear to account for the data to
within Mukherjee et al.’s (4) estimate of the experimental error.
The green line in Fig. 2b indicates the LIR cut used by Mukherjee
et al. to define bound regions. Of the 186 regions passing this cut,
the experimenters estimated that 7–9% were false positives. We
find that 167 (89.8%) of these regions have HF # 90%, 18 (9.7%)
have HF " 10%, and only 1 region has an intermediate HF. So,
although energy matrix models are simplistic, they appear to
account for this Abf1p PBM data about as well as one could hope
for any model, regardless of sophistication.

Mukherjee et al. (4) were obliged to adopt a stringent thresh-
old to minimize false positives, in the process rejecting an
unknown number of bound sequences. Our model-based ap-
proach, by contrast, can tease out regions that are likely to be
bound, regardless of where they lie in the raw data distribution.
In this case, we find 840 regions with HF # 50% (and therefore
bound by our criterion) and with LIR below the cut chosen by
Mukherjee et al. (4). In short, we find many more bound regions
lying below the experimenters’ threshold than lying above it.

This is a strong statement and one for which one would like
independent confirmation. The best evidence would come from the
direct in vitro measurement of large numbers of putative site
binding energies. Energy measurements for Abf1p have been
carried out for a small number of sites (13), but the results agree
neither with our predictions nor with the analysis of Mukherjee et
al. (4) or Lee et al. (3). It is possible that these measurements are
in error, and we believe further in vitro studies are necessary to
resolve this issue. Recently developed high-throughput techniques
for direct measurement of binding affinities give promise of pro-
viding data of the quality and scope needed to test these models in
quantitative detail (S. Quake, personal communication).

Although direct energy data are lacking, phylogenetic analysis
provides alternative evidence in support of our binding energy
predictions. Using the intergenic alignments of Kellis et al. (12),
we identified all pairs of ungapped orthologous intergenic 20-bp
sequences in S. cerevisiae and Saccharomyces bayanus. We then
computed the mean predicted binding energy (using !PBM) of
each site in S. cerevisiae, as well as that of its ortholog. A scatter
plot of the resulting energies (Fig. 2c) reveals a large and well
separated population of sites whose putative energies lie below

Fig. 2. Predictions derived from the ensemble of Abf1p energy models. (a)
Histogram showing the !PBM HF of all 20-bp sites in the intergenic DNA of S.
cerevisiae. The distribution is strongly bimodal, efficiently separating bound
sites (HF near 1) from unbound sites (HF near 0). The left-most bin contains the
vast majority of sites and has been truncated for readability. (b) Mean fraction
of regions in each z-bin declared bound by models in !PBM, plotted against the
mean LIR of those regions. Error bars show the rmsd variation in this fraction
from model to model. The distribution of experimentally determined LIRs is
shown in the background for reference. The green line is the threshold used
by Mukherjee et al. (4) to identify bound regions. (c) 2D histogram of mean
energies assigned by !PBM to ungapped orthologous intergenic site pairs in S.
cerevisiae and S. bayanus. Sites lying below the E $ 1 binding cutoff (dashed
lines) in one species are highly likely to fall below this cutoff in the other
species.
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FIG. 29 Further results for Abf1p energy matrix in yeast
inferred from PBM data from Ref. (Mukherjee et al, 2004);
figure reproduced from Ref. (Kinney et al, 2006). Panel a)
shows how K = 5812 intergenic regions of yeast are catego-
rized as bound xi = 1 or unbound xi = 0 by energy ma-
trices in the solution set. Plotted is the histogram of the
“hit fraction”, 〈xi〉ε, i.e. the average value of xi for each re-
gion across all solution energy matrices. The regions clearly
separate into two classes: most of the regions are declared
unbound (HF∼ 0) by all energy matrices (the histogram bar
corresponding to HF= 0 would extend beyond 1500 counts
in the plot, but is cut for clarity), and a smaller set of re-
gions that is declared bound (HF∼ 1), by most of the energy
matrices. Panel b) shows the histogram of raw experimental
data in blue, the experimentalists’ threshold (green line), and
the inferred P (xi|zi) (sigmoidally shaped scatterplot with er-
rorbars). The sigmoidal shape has not been assumed, but is
the result of our inference. Panel c) shows the energies as-
signed to sites of length L in every intergenic region in S.
cerevisiae (the yeast species on which the analysis was run)
vs the energies assigned to orthologous sites in a related yeast
species, S bayanus. Those sites that are declared bound (be-
low threshold Θ = 1) in S cerevisiae also have correspondingly
low energies in the other yeast species, forming an island of
points in the lower left corner of the plot. For sites above the
threshold which are non-functional, the correlation between
the energies in the two species is much weaker.
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1 (i.e., are predicted to be bound) in both genomes: of the 676
S. cerevisiae sites with energy ! 1, a total of 501 (74%) have an
S. bayanus ortholog whose energy also lies ! 1. By contrast, sites
with energy " 1 in either genome tend to have orthologs with
highly randomized energy. In short, the large majority of align-
able sites predicted to be bound by our models have strongly
conserved putative energies. The fact that our models are found
directly from in vitro binding data provides a compelling case that
they also describe the free energy of Abf1p–DNA binding in vivo,
and that this binding energy plays a major role in determining
which sites have biological function.

Next, we performed a similar analysis of Lee et al.’s ChIP–chip
data (3) to determine whether it gives a description of Abf1p
consistent with that obtained from the PBM data. In these
ChIP–chip experiments, TFs were cross-linked in vivo to their
binding sites, after which TF-bound fragments of DNA were
isolated, amplified, labeled, and hybridized in competition with
reference DNA to a ssDNA microarray of yeast intergenic
regions. The enrichment observed in each microarray spot was
characterized by an ‘‘X-statistic’’ based on the single array error
model of Hughes et al. (14). Assuming a Gaussian distribution
for these X-statistics in the absence of TF binding, Lee et al.
reported an enrichment P value for each region.

We assigned these probed sequences to z-bins according to
their P values (equivalently, according to their X-statistics).
MCMC analysis then gave an ensemble #ChIP of 4 $ 104 matrix

models. Results of a single-ensemble analysis of #ChIP were
similar to those of #PBM (see SI Text and SI Figs. 10–14). Note
that, by integrating over all possible error models, we avoided
having to model the noise contributions from each individual
step in the ChIP–chip protocol. We also avoided having to
estimate in vivo contributions to the experimental noise, such as
the fraction of valid binding sites likely to be obscured by
chromatin.

Although the ChIP–chip and PBM results are quite similar,
the energy matrix elements derived from #ChIP are systematically
larger than those of #PBM. Our procedure, though, produces
energy matrices artificially scaled so that the energy cutoff is
equal to 1. Thus, when comparing ensembles, we are free to
rescale the matrices in one ensemble so as to bring them into
accord with those of the other. The resulting difference between
the rescaled cutoffs has a natural interpretation: binding site
occupancy, which we approximate by a step function at the
energy cutoff, should vary with TF concentration and may well
differ between experiments; the energy matrix itself, on the other
hand, reflects an intrinsic property of the TF molecule that
should, in principle, not vary between experiments (if other
factors, such as ion concentration and pH, are kept at similar
levels). In the case at hand, we found that rescaling the #ChIP
energy cutoff to 0.75, while keeping the #PBM cutoff at 1, brought
the #ChIP energy matrix elements into close agreement with
those of #PBM. Fig. 3 a and b illustrates this close agreement
between the mean matrix elements in the two ensembles. Fig. 3d
provides a direct comparison of the #ChIP and #PBM distributions
for each matrix element. In most cases, values that could
plausibly have been drawn from either the #ChIP or #PBM
distribution can be identified (illustrated in Fig. 3d Upper Inset,
which shows the raw #ChIP and #PBM histograms for the orange-
circled matrix element in Fig. 3 a and b). Although the two
histograms are not identical, they overlap enough that a matrix
element value consistent with both distributions can be found.

In SI Text we argue that a simple !2 test provides a valid way
of quantifying such consistency. The resulting !2 P values for
each matrix element are shown in Fig. 3c, with lower P values
corresponding to poorer consistency between ensemble distri-
butions. There are a few matrix elements for which #ChIP and
#PBM give inconsistent distributions by this test (the red and

Fig. 3. Comparison of #PBM and #ChIP parameter distributions. (a) Mean
values of rescaled matrix elements in #ChIP. (b) Mean matrix elements in #PBM

(same as Fig. 1a). (c) !2 P values quantifying the element-by-element consis-
tency of the #ChIP and #PBM distributions. (d) Mean and rmsd uncertainty of
each matrix element according to the #PBM (blue) and rescaled #ChIP (red)
distributions. Elements are arranged from left to right in order of increasing
mean. (Insets) Raw MCMC histograms show the values obtained for the matrix
elements circled in a–c and highlighted below each Inset in d. The #ChIP matrix
element distribution (Lower Inset) has most of its weight at precisely 0; the
corresponding histogram has been truncated at this bin.

Fig. 4. EMA likelihood analysis leads to compatible binding site predictions
from different experimental data sets, whereas the more standard method of
thresholding the experimental signal leads to substantial disagreement. (a)
The 20-bp intergenic sites in S. cerevisiae having #ChIP HF " 50% (red) are a
nearly perfect subset of those with #PBM HF " 50% (blue). (b) In contrast, the
intergenic regions selected by Mukherjee et al.’s (4) LIR threshold on PBM data
(blue) overlap poorly with those selected by Lee et al.’s (3) (P value threshold
on ChIP–chip data (red). (c and d) The thresholds chosen by the experimenters
are indicated by the green lines on the experimental LIR histogram of PBM
data in c and on the X-statistic histogram of ChIP–chip data in d.
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FIG. 30 Lower row: raw data from PBM and ChIP exper-
iments on Abf1p, along with experimental thresholds. An
intersection of regions that pass the threshold in both ex-
periments shows large inconsistencies, as shown in Panel b).
Panel a) shows the intersection of binding sites inferred using
the mutual-information method presented here. More sites
are found, and the sites found in the ChIP experiment are
almost a perfect subset of the PBM-identified sites. Figure
reproduced from Ref. (Kinney et al, 2006).

ney et al, 2006). The key point is that one can formulate
the problem as maximum likelihood inference using an
unknown error model P (zi|xi) and then average over all
such error models with some prior; in that case one ob-
tains an “error model averaged” log likelihood logPEMA

for the data, and this turns to be directly related to the
mutual information of Eq (61): logPEMA = KI(zi;xi)+
(irrelevant terms). Thus a mathematical connection can
be established between mutual information and Bayesian
inference.

To summarize, a new method for inferring TF energy
models from a wide variety of experimental data has
been proposed and shown to bring various existing ex-
periments into concordance. High-throughput datasets
provide enough data – if all data is indeed used for infer-
rence and not ignored by arbitrary thresholds – to swamp
the uncertainty introduced because of our ignorance of
the real error model. It can be shown that this inference
also works well when genomic background is complicated,
as in Ref. (Elemento et al, 2007); that reference also pro-
vides an online tool which uses the same framework to
learn many TF energy models simultaneously across the
genome. Mutual information inference procedure does
not rely on the relation between the position weight ma-
trix (PWM) and the energy matrix, and thus does not
require the validity of assumptions underlying the Berg
& von Hippel argument (Berg et al, 1987).

D. Probing combinatorial regulation

We conclude this lecture by briefly reviewing the work
of Kinney et al (Kinney et al, 2010), that has com-
bined the mutual-information inference with a new high-

throughput deep-sequencing based approach, in order to
(i) precisely quantify the contribution of each basepair
in the regulatory sequence to the function; and (ii) build
detailed biophysical models of combinatorial regulation.
In Ref. (Kinney et al, 2010), the authors decided to

reexamine the regulatory region of Lac operon, where
both the CRP transcriptional activator, and the RNAP
polymerase bind to regulate the expression of lac genes;
see Fig. 9.

were mutagenized, the strain of E. coli used, and the physiological
conditions under which lac promoter function was characterized.

The full-wt experiment used a library of reporter constructs,
derived from pUA66-lacZ (Fig. 1C; ref. 21), in which region
½−75∶ − 1" of the lac promoter was mutagenized at 12% per
nucleotide, yielding 9# 3 substitution mutations per sequence.
Wild-type E. coli (strain MG1655) were transformed with this
plasmid library, after which GFP expression was induced during
exponential growth in minimal media supplemented with glucose,
cAMP, and 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG).
FACS (17) was used to sort induced cells into 10 different
batches, each cell according to its measured fluorescence
(Fig. 1D). PCR was then used to tag mutant TRSs according
to the batch in which each TRS was found (Fig. 1E). 454 pyro-
sequencing (18) of the resulting PCR amplicons yielded a list of
51,835 mutant TRSs and corresponding batches. The batch μ
associated with each TRS σ serves as a noisy and qualitative mea-
surement of that TRS’s in vivo transcriptional activity. Experi-
ments crp-wt and rnap-wt were performed the same way, but
using mutant TRSs in which only the CRP or RNAP binding site
was mutagenized (Table 1).

The full-500, full-150, and full-0 experiments were performed
using the same plasmid library as in full-wt, but with transcrip-
tional activity assayed in E. coli strain TK310 (11) grown in
500 μM, 150 μM, or 0 μM cAMP, respectively. Cells were also
sorted into five batches instead of 10. Strain TK310 lacks aden-
lyate cyclase (cyaA, needed for cAMP synthesis) and phospho-
diesterase (cpdA, which degrades cAMP) and is therefore
unable to control its intracellular cAMP levels (11). Growing
TK310 cells in media supplemented with different concentrations
of cAMP thus allowed us to control the active intracellular
concentration of CRP (just as Kuhlman et al. did). Importantly,
though, the mechanism of lac promoter function is the same in
both MG1655 and TK310 cells.

In total we obtained 220,591 mutant TRSs, with each TRS σ
assigned a noisy, qualitative measurement μ of its transcriptional
activity (Fig. 1B). These sequences σ and measurements μ
comprise the only data used in the analysis that follows.

Information Footprints Reveal Functional Binding Sites
Our first goal was to identify nucleotide positions that affect
expression, thereby locating all functional binding sites within
the probed region of the lac promoter. For this purpose we used
mutual information, a fundamental quantity from information
theory that provides the most general measure of dependence
between any two variables (22). For each nucleotide position i,
we computed the number of sequences in each batch μ having
each of the four possible bases bi. We then used this information
to compute the mutual information Iðbi; μÞ between bi and μ
(see SI Appendix: Computing mutual information for details),
thereby quantifying the effect of the base at position i on our
measurements. Plotting the mutual information Iðbi; μÞ for each
position i produced what we call an “information footprint.”

Fig. 2A shows the information footprint produced by the
full-wt experiment. The known binding sites of CRP and RNAP
are clearly visible and each has the expected bipartite structure:
CRP binds DNA as a homodimer at ½−72∶ − 51" with a 6 bp gap
between its two DNA-binding domains, while RNAP binding to
½−41∶ − 1" results from the recognition of separate sequence
elements centered roughly on positions −10 and −35 (8 and 12).

The information values displayed in Fig. 2A are small, ranging
from ∼0.05 bits down to values indistinguishable from zero. This
is not surprising, since each Iðbi; μÞ measures the effect on tran-
scription of just one out of 75 positions. But because our dataset
is large (N ¼ 51; 856), these information values are determined
very precisely—typically to within ∼4 × 10−4 bits. Fig. 2A thus
displays meaningful information values ranging over two orders
of magnitude. This high level of sensitivity can reveal aspects
of sequence function not detectable by other methods, e.g.,
(23). For instance, small but significant effects on expression were
observed between the −10 and −35 elements and between the
CRP and RNAP sites, regions not previously thought to influence
transcription at the lac promoter. Indeed, only the 10 positions
½−75;−70;−48;−42;−41;−23;−22;−21;−19;−3" show an insig-
nificant effect on expression (i.e., P > 0.05).

Fig. 1. Overview of the experiments. A) We used lac promoters mutagen-
ized in region ½−75∶ − 1" to drive the expression of GFP. B) Plasmids contain-
ing mutant lac promoters driving GFP expression were transformed into
E. coli. Induced cells were then partitioned using FACS. Deep sequencing
of the mutant promoters in each FACS batch yielded a long list of sequences
σ with corresponding measurements μ. C) Plasmid pUA66-lacZ (21), a very-
low-copy-number plasmid on which the wild-type lac promoter drives the
expression of GFP; tick mark spacing is 200 bp. D) Fluorescence distributions
of MG1655 cells containing the full-wt plasmid library (orange), the pUA66-
lacZ plasmid (black), or a negative control plasmid pJK10 (SI Appendix:
Fig. S1) in which region ½−75∶ − 1" of the lac promoter was deleted (gray).
In the full-wt experiment, batches B1–B9 received cells from the indicated
fluorescence ranges, while batch B0 received cells randomly sampled from
the initial library. E) Each PCR amplicon contained a 7 bp DNA barcode indi-
cating the batch μ in which the sequence σ was found. 454 pyrosequencing
(18) yielded reads of about 242 bp covering the indicated regions.

Table 1. Shown for each of our six experiments are the
mutagenized region of the lac promoter, the per-position
substitution rate, the E. coli strain used, the cAMP concentration
used for induction, the number of batches into which cells were
sorted, and the final number of filtered, nonredundant reads

Dataset Mut. region Mut. rate Strain cAMP (μM) No. μ No. reads

full-wt ½−75∶ − 1" 12% MG1655 500 10 51,835
crp-wt ½−74∶ − 49" 24% MG1655 500 10 46,986
rnap-wt ½−39∶ − 4" 15% MG1655 500 10 45,461
full-500 ½−75∶ − 1" 12% TK310 500 5 23,431
full-150 ½−75∶ − 1" 12% TK310 150 5 24,334
full-0 ½−75∶ − 1" 12% TK310 0 5 28,544
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FIG. 31 The regulatory sequence of the lac operon, with bind-
ing sites for the CRP transcription factor and the RNA poly-
merase, reproduced from Ref. (Kinney et al, 2010). To probe
precisely how the sequence impacts function, a plasmid library
was engineered in which mutagenized versions of the regula-
tory sequence (bright green) drove the expression of GFP. E
coli were transformed with the plasmids, the expression of the
GFP was induced, and the fluorescence could be measured at
the single cell level by FACS.

The key to the experiment was to create a large library
of plasmids that differ only in that the regulatory se-
quence of interest has been mutated, see Fig. 31; this reg-
ulatory sequence controlled the expression level of GFP,
which could easily be recorded in the experiment. The
cells with different regulatory sequences $si drove various
levels of fluorescence, that the experimenters sorted into
9 bins, zi. Despite being seemingly very different from
the PBM / ChIP setups described in the previous section,
here too one is working with a large number (K ∼ 5 · 104
per experiment) of pairs of sequences and the experimen-
tal readouts, and an almost identical inference technique
can be applied.
First, one may ask directly about the mutual infor-

mation I(bi; z), about the identity of the base pair bα =
{A,C, T,G} at position α = 1, . . . , 70 in the mutated reg-
ulatory sequence, about the expression level z of GFP, as
measured by fluorescence activated cell sorting (FACS).
This is a direct measure, without making any modeling
assumptions, about how each base pair on its own affects
expression; see Fig. 32.
As Fig. 32 shows, the method yields extremely precise

information footprints that characterize the functional
impact of every nucleotide on the promoter activity, us-
ing the mutual information measure. This method is
clearly applicable to unknown regulatory regions if one
wishes to quantitatively determine which nucleotides are
functionally important.
Finally, it is possible to use the mutual-information

inference to learn the energy matrices of the CRP and
RNAP, εCRP and εRNAP , and the possible energetic in-
teraction between the two proteins. Here, the interac-
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Information footprints can further allow one to determine
which of the identified sites are involved in the response to a
specific biochemical signal or genetic perturbation. Fig. 2B shows
the information footprint from the full-0 experiment, in which
TK310 cells were induced in the absence of cAMP, thereby
inactivating intracellular CRP. The lack of active CRP is reflected
in the near-total loss of information at positions ½−75∶ − 51":
information values at all but three positions within this 25 bp site
differ insignificantly from zero (i.e., P > 0.05). An intermediate
reduction in information occurs in the full-150 footprint,
while the full-500 footprint closely resembles that of full-wt
(SI Appendix: Fig. S3). We note that the small but significant
information values at positions ½−64;−57;−52" in the full-0
footprint might result from interactions between DNA and the
α subunits of RNAP (24), or from alternative RNAP binding
sites (25).

An important caveat to this analysis is that the quantitative
features of an information footprint ultimately depend on the
details of one’s experiment, including the level of mutagenesis
used in the initial TRS library and the specific fluorescence gates
used for sorting cells. So while qualitative differences between
footprints from different experiments can be revealing, it is diffi-
cult to draw conclusions frommore subtle quantitative differences,
such as the different shapes of the RNAP footprint in Fig. 2 A
and B. But as we show in the next section, explicit biophysical
models can be fit to data in a way that does not depend on such
experimental details. Quantitative differences between models
inferred from different experiments can, as a result, be revealing
about underlying molecular mechanisms.

Model Fitting in the Presence of Uncharacterized Noise
Next we used our data to infer quantitative models for how in vivo
protein-DNA and protein-protein interactions modulate tran-
scription. By “model” we mean a mathematical function that as-
signs to each sequence σ a predicted value x for some quantity of
interest, such as the DNA-binding energy of a regulatory protein,
or the rate of transcription resulting from the interactions between
multiple proteins. To infer a given model, we first assumed a
specific mathematical formula for the model, then determined
the values of model parameters by matching the sequence-depen-
dent predictions x to our sequence-specific measurements μ.

Such model fitting could be done in the standard Bayesian
way if we knew the experimental “error model” pðμjxÞ—the
probability of obtaining a measurement μ given an underlying
quantity of interest x (such as binding energy or transcription rate).
But in our experiments it was virtually impossible to accurately
determine pðμjxÞ a priori. Many difficult-to-characterize noise
processes, including stochastic transcription, variations in cell size,
and noise in FACS measurements, contribute to the quantitative
form of pðμjxÞ. Also, in the case where x represents theDNA-bind-
ing energy of a protein, we do not know a priori how the binding
of that protein affects transcription; indeed, this is something
we want to learn from the data. Kinney et al. (16) overcame
this problem by computing likelihood in the presence of an
explicitly uncertain error model. They showed that regardless of
what pðμjxÞ actually is, the likelihood of a candidate model is well
approximated by

pðdatajmodelÞ ¼ const × 2NIðx;μÞ [1]

in the limit where the number N of independently measured
sequences is sufficiently large. Here Iðx; μÞ is the “predictive infor-
mation” of the model—the mutual information between model
predictions x andmeasurements μ. Although Kinney et al. focused
on the analysis of microarray data, Eq. 1 is applicable to any da-
taset consisting of a large number of sequences and corresponding
measurements. Kinney et al.’s approach therefore provides a
practical substitute for standard likelihood-based inference when
the experimental error model is either difficult to characterize
or is unknowable a priori (see SI Appendix: Statistical inference
using mutual information for more discussion).

In the analysis that follows, we used a custom parallel temper-
ing Monte Carlo algorithm to sample model parameters accord-
ing to the right-hand-side of Eq. 1 (see SI Appendix: Parallel
tempering Monte Carlo sampling of model parameters). This
allowed us to determine not just the best values for model para-
meters, i.e., which values maximize predictive information Iðx; μÞ,
but also the uncertainty in each parameter due to finite data.
Because N > 104 for all of the experiments described in this
article, even changes as small as 10−4 bits in the value of
Iðx; μÞ led to substantial changes in model likelihood. The large
amount of data produced by our experiments thus allowed us to
determine precise quantitative values for model parameters even
though our measurements were noisy and qualitative.

in Vivo Interaction Energies from Sequence Data
Having located the binding sites of both CRP and RNAP de novo
using information footprints, we sought an explicit model for
each protein’s sequence-dependent binding energy. For this we
used “energy matrix”models: each base within a protein’s binding
site was assumed to contribute additively to the overall binding
energy. These simple models have been shown to accurately de-
scribe a number of transcription factors, (e.g., refs. 26 and 27),
though there are known exceptions (28 and 29).

We fit an energy matrix for CRP to positions ½−74∶ − 49" using
the full-wt dataset. Energy matrix elements were sampled,
according to Eq. 1, using the predictive information Iðεc; μÞ where
εc is CRP’s predicted binding energy. The resulting optimal

Fig. 2. Information footprints. A) Footprint from full-wt data, aligned with
known protein-DNA contact positions (highlighted). The lower plot is a 20X
magnification of the upper plot. Error bars (dark blue lines) indicate uncer-
tainties due to finite sample effects (SI Appendix: Computing mutual
information). B) Footprint from the full-0 experiment, in which intracellular
CRP was inactive. SI Appendix: Fig. S3 shows information footprints from all
six experiments.
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FIG. 32 Information footprints of CRP and RNAP binding to
DNA in the lac promoter, reproduced from Ref. (Kinney et al,
2010). The blue and violet regions on the sequence (green) de-
note where RNAP and CRP, respectively, are thought to con-
tact the DNA. Panel a) shows the case where CRP is bound.
Below the sequence, the information I(bα; z) is shown, in bits,
about the identity of a single nucleotide and the final GRP
fluorescence, together with the error bars. In the third row we
see the zoom-in of the small information values. The method
yields precise results with very small error bars; the results
are broadly consistent with what is known, but also show
that some positions carry small, but significant information
about promoter activity. Panel b) shows the same analysis
performed when CRP is not bound. Within error bars, most
of the positions that are informative about expression with
CRP bound are now 0, as expected.

tion even helps in constraining the absolute energy scale
of the energy models21, so the binding energies can be
expressed in physical units, as shown in Fig. 33. Using
a convincing series of information-theoretic arguments,
the authors can compare how much information the se-
quence gives about the promoter activity I($s; z) (this is
computable directly from the data without any model),

21 It can be shown mathematically that the interaction energy term
breaks the arbitrariness about the scale of the energy matrices
present when single TF binding is analyzed.

with the fraction of that information that is captured
by any particular model – this can inform us how good
any model is with respect to reality. They show that
the thermodynamic model of combinatorial regulation,
developed in line with the reasoning of Section II, does
an excellent job of accounting for the data, and that the
models inferred using mutual-information inference out-
perform the models constructed using the Berg & von
Hippel relation in Eq. (59). For many other interesting
details and controls we refer the reader to the original
reference (Kinney et al, 2010).

matrix is shown in Fig. 3A. We similarly fit an energy matrix to
positions ½−41∶ − 1" to model RNAP’s binding energy εr (Fig. 3B).
CRP and RNAP energy matrices were also inferred from our five
other datasets (SI Appendix: Fig. S4A). We note that at this stage
of our analysis we were able to determine each matrix only up to
an unknown multiplicative constant, not in physical units such as
kcal/mol (see SI Appendix: Maximizing mutual information leaves
some model parameters undetermined).

Unlike information footprints, these energy matrices are
meant to capture intrinsic properties of the regulatory proteins,
properties that should not depend on specific ways cells were
sorted or on the level of mutagenesis used in the TRS library.
The optimal matrices inferred from our six experiments (4 ma-
trices for CRP, 5 for RNAP) are nearly identical, supporting
this interpretation: CRP matrix elements derived from different
experiments correlate by >95% (SI Appendix: Fig. S4B), while
RNAP matrix elements exhibit >92% correlation (SI Appendix:
Fig. S4C). Furthermore, each of these matrix models performs
better on every one of our datasets than do any of the models
for either CRP or RNAP currently in the literature (with two min-
or exceptions; see SI Appendix: Model comparison to literature).
We find this level of quantitative agreement between experiments
remarkable, considering that our six experiments used different
promoter libraries, different E. coli strains (MG1655 or TK310),
different inducing conditions (500 μM, 150 μM, or 0 μM cAMP),
and different fluorescence gates for sorting cells. This close
agreement in the face of important experimental differences
attests to both the usefulness and correctness of Eq. 1.

Our inferred CRP and RNAP energy matrices recapitulate
much of what is known about the sequence specificities of these
two proteins. The known consensus sequences—TGTGAðNÞ6
TCACA for CRP (3) and TTGACAðNÞ18TATAAT for RNAP
(30)—exactly match the lowest energy sequences predicted by
nearly every one of our matrix models. The one exception is
the RNAP matrix fit to full-0 data, which predicts that TTGATA

will have slightly lower energy than TTGACA in the −35 region.
We note that every one of our RNAP matrices also predicts that
having a “G” at position ½−14" increases RNAP binding strength.
In the literature this G is said to create an “extended -10 promo-
ter,” and such promoters are known to have increased transcrip-
tional activity. OurCRPmatrices are also in qualitative agreement
with previous in vitro measurements (31), though there are some
quantitative discrepancies.

Next we sought a quantitative understanding of how the inter-
action of CRP with RNAP affects transcription. Kuhlman et al.
(11) previously showed that a simple biophysical model based on
equilibrium statistical mechanics (reviewed in ref. 13) accounted
well for the effect of cAMPon lacZ expression in TK310 cells. We
hypothesized that using energy matrices to describe the binding
energies of CRP and RNAP within Kuhlman et al.’s model, then
fitting all model parameters to our data de novo, would allow us
to recover Kuhlman et al.’s results, including their measurement
of the interaction energy between CRP and RNAP.

Following Kuhlman et al., we assumed that the rate of tran-
scription τ at the lac promoter is proportional to the occupancy
of RNAP at its binding site in thermal equilibrium. This model is
quantitatively expressed as

τ ¼ τmax
Cre−εr∕RT þ CcCre−ðεcþεrþεiÞ∕RT

1þ Cce−εc∕RT þ Cre−εr∕RT þ CcCre−ðεcþεrþεiÞ∕RT
; [2]

where RNAPoccupancy is given by the sum of Boltzmann weights
corresponding to physical states in which RNAP is bound, divided
by the sum of weights for all possible states of the system. These
Boltzmann weights depend on (i) the CRP and RNAP binding
energies εc and εr , which we express in kcal/mol and normalize
to be zero at each wild-type lac promoter site, (ii) the concentra-
tions Cc and Cr of CRP and RNAP, expressed in units of each
wild-type site’s dissociation constant and (iii) the CRP-RNAP in-
teraction energy εi, expressed in kcal/mol. τmax is the transcription
rate resulting from full RNAP occupancy. R ¼ 1.98 × 10−3 kcal∕
mol °K is the gas constant and T ¼ 310 °K (37 °C) is the tempera-
ture at which cells were induced.

Using Iðτ; μÞ evaluated on full-wt data, we fit all of the para-
meters defining τ, including εi, Cc, and the elements of the energy
matrices used to compute εc and εr . Doing so we inferred a
CRP-RNAP interaction energy εi ¼ −3.26' 0.41 kcal∕mol. This
value is consistent with Kuhlman et al.’s measurement of
−3.4 kcal∕mol (11), thus demonstrating that DNA sequence data
can be used to measure the in vivo interaction energy between
two proteins. This procedure also yielded an in vivo CRP concen-
tration of Cc ¼ ½CRP"∕Kwt

d ¼ 10−1.2'0.2. Fig. 3C shows these va-
lues for εi andCc, as well as the optimal energy matrices for εc and
εr inferred by fitting τ. These matrices closely resemble those in
Fig. 3 A and B, but, unlike the matrices we inferred by separately
fitting εc and εr , their elements are determined explicitly in
physical units of kcal/mol. We note that fitting τ to full-wt data
provided no information about the value of either τmax or Cr
(see SI Appendix: Maximizing mutual information leaves some
model parameters undetermined).

Testing Biochemical Mechanisms by Fitting a Single Model
to Multiple Datasets
cAMP is known to alter lac promoter activity by affecting CRP’s
ability to bind DNA, not CRP’s interaction with RNAP. Both of
these possibilities, though, are consistent with the information
footprints shown in Fig. 2. By contrast, the former hypothesis
predicts that the CRP concentration Cc in our model for τ should
vary from experiment to experiment, while the latter predicts an
experiment-dependent interaction energy εi. To further test the
validity of our approach, we fit a single model for τ to all six
of our datasets (see SI Appendix: Fitting a model to multiple
data sets). This multidataset model employed a single CRP energy

Fig. 3. Models fit to full-wt data. A) The CRP energy matrix fit to ½−75∶ − 49"
by maximizing Iðεc ; μÞ on full-wt data. B) The RNAP energy matrix fit to
½−41∶ − 1" by maximizing Iðεr ; μÞ on full-wt data. In A and B, each matrix col-
umn lists the energy contributions of the four possible bases at the aligned
position within the site. Matrix elements range from 0 to 1 (in arbitrary units)
with the lowest element in each column set to zero by convention.
SI Appendix: Fig. S4 shows the CRP and RNAP matrices derived from all six
of our datasets. C) The thermodynamic model for τ inferred using Iðτ; μÞ in
Eq. 1. Optimal CRP and RNAP energy matrices are shown with elements ex-
pressed in kcal/mol (1 kcal∕mol ¼ 1.62kbT at T ¼ 310 °K). It is useful to define
each wild-type lac promoter site as having zero energy. We therefore add an
energy shift, shown below each matrix, when computing εc and εr . Doing this
means that Cc represents the intracellular CRP concentration in units of the
dissociation constant of the wild-type (zero energy) site. Values quoted for εi
and Cc are mean' rmsd values determined from the parameter ensembles
sampled using parallel tempering Monte Carlo.
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FIG. 33 Energy matrix for CRP binding in panel a) and
for RNAP in b), when probed separately using mutual-
information inference. Panel c) shows the joint inference of
both energy matrices together with the energy of interaction,
εi. The matrices in c) are consistent with the separately
learned matrices in a,b). Due to the presence of coopera-
tive interaction εi, it is possible to put absolute units on all
energies. Figure reproduced from Ref. (Kinney et al, 2010).

Hopefully these examples present a strong case for the
usefulness of information-theoretic measures and meth-
ods, and demonstrate that inference should develop in
step with advances in experimental techniques. In partic-
ular, the examples highlight the difference between tra-
ditional physics experiments in which the instruments
can be calibrated and understood well enough for us to
obtain a handle on P (data|model), and quantitative bi-
ology, when such understanding is often lacking. If the
latter case and when using biased or ad hoc inference
methods, it is not clear that a larger dataset would actu-
ally lead to better models. On the other hand, principled
methods can give a very detailed, quantitative and physi-
cal account of what is happening in the regulatory regions
of the genome. The price for this performance is large
required amount of data and computational time, but as
the field progresses, those factors are becoming less and
less important as practical constraints.
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E. Relation to neuroscience

A very similar method has been devised to probe the
behavior of sensory neurons. As we mentioned in Sec-
tion II, sensory neurons are often described in terms of
a linear-nonlinear (LN) model: a stimulus, e.g. a movie
displayed to a retinal ganglion cell, is convolved first with
a linear kernel L that parametrizes the preference of the
neuron for some linear feature (dimension) in a normally
highly-dimensional stimulus. The result of this convo-
lution is then passed through a nonlinear function that
yields the probability rate for generating a spike. As
discussed, various methods have been developed to infer
the linear filter L from traditional experimental setups,
in which a large number of stimulus snippets $si are pre-
sented, and the spike/no-spike zi is recorded. Note the
analogy with gene regulation: we have stimulus of high
dimensionality (sequence or a movie), experimental out-
put (GFP level or spikes), we are looking for a linear
function on the stimulus space (energy matrix ε or linear
kernel L), and we don’t know the probabilistic model of
how the output is generated given the product of stimulus
with the kernel (or sequence with the energy matrix).
If we knew the nonlinearity that the neuron imple-

ments and its likelihood function for determining when
it spikes, we could infer the linear kernel L by writing
down the probability of data given the model, and do
Bayesian inference of the model. But just as in the case
of transcriptional regulation, these quantities too are of-
ten unknown. A method called maximally informative
dimensions that finds the linear kernel L by maximizing
the mutual information between the stimulus projection
and the spike trains has been developed and successfully
applied in several sensory systems (Sharpee et al, 2004).

VI. RECONSTRUCTING BIOLOGICAL NETWORKS
USING THE MAXIMUM ENTROPY PRINCIPLE

One of the most pressing questions in systems biol-
ogy today deals with deciphering the structure of regu-
latory networks from data. The traditional way in which
such networks were dissected was through genetic exper-
iments, where painstaking experimentation and muta-
genic studies helped deconstruct the networks one link
at a time. With the advent of high-throughput exper-
iments, such as microarrays, ChIP and protein binding
arrays, as well as simultaneous stains and fluorescent pro-
tein fusions etc, the need arose for computational tools
that would be able to infer networks from such datasets
directly.

Apart from being high-throughput, some of these tech-
niques have opened up another window: instead of look-
ing at bunches of cells mixed together (like in microar-
rays), they are enabling experimenters to record simul-
taneous expression or activation levels of the nodes of
a single biological network, without pooling over many
“copies” of such networks (e.g. extracted from differ-

ent cells). In physics terms, this means that not only
are the mean activation or expression levels indicative
of the network activity, but so are the correlated fluctu-
ations among the nodes. To make use of this fact, we
are looking for physical models that include modeling of
the (correlated) noise. The structure of fluctuations can
potentially tell us a lot about the wiring diagram of the
system.
The simplest – and still most widely used – approaches

for detecting network structure rely on studying correla-
tions directly. In a typical microarray experiment, the
cell cultures are exposed to various external perturba-
tions and the mRNA levels for genes across perturbations
are recorded. Then a pairwise correlation matrix is com-
puted across the perturbations, yielding a N × N pair-
wise similarity matrix between N genes (generalizations
are possible by measuring mutual information instead of
correlation coefficients). Such a similarity matrix can
then be used as an input to, for example, clustering.
Clustering is one of the simplest and most scalable

methods of understanding the collective behavior of a
network. Consider the information matrix of Fig. 22
as a matrix of weights between the nodes of a graph:
the graph has strongly connected components that cor-
respond to clusters (blocks on the diagonal of the infor-
mation matrix) and these blocks are weakly coupled to
other blocks. One might even threshold the information
matrix and draw binary links in the graph whenever the
similarity measure exceeds the threshold value, and some
researchers have indeed taken this approach.
Clustering turns out to be an extremely powerful ap-

proach for several reasons. Firstly, in gene regulation
we know that out of the whole set of genes, the total
number of genes that regulate other genes – so called
transcription factors – is on the order of a few percent.
Although this, much smaller, group of genes with regula-
tory power could conspire combinatorially and still regu-
late every other gene in a complicated individual fashion,
many genes need to be up- or down-regulated together,
because they act as enzymes in connected reaction path-
ways or they need to be active in a specific tissue. This
coregulation is the basis for the success of the clustering
approach: coregulated genes cluster and cluster mem-
bers are assumed to be regulated in identical ways by
their (one or few) transcription factor(s).
Although clustering is clearly productive as a first step

in understanding genetic regulatory networks, it is not a
generative model of the network. It reorders the nodes
so that the structure (hopefully) becomes apparent, but
does not give any prescription about how the activity of
one gene influences the activity of the others – the only
input to the clustering procedure is the mutual informa-
tion, and we explicitly stated that information measures
dependency without revealing anything about underlying
functional relationships. Moreover, as we will soon see,
understanding that network elements σi and σj are cor-
related, which is the basis of clustering, tells us nothing
about whether σi is really directly influencing σj ; in par-
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ticular, in gene regulation, the genes are coregulated and
are therefore coexpressed, and correlation does not imply
causation or direct interaction. Despite being very prac-
tical, clustering leaves too many questions unanswered if
we want to understand network behavior.

A. Correlations vs interactions

Can we disentangle the mesh of correlations and sep-
arate the correlations caused by real underlying interac-
tions from the correlations induced indirectly by other
interactions, as is illustrated in Fig. 34?

To start, we recall a classic problem in statistical
physics: we are given a lattice of Ising spins (binary vari-
ables), and some specification of exchange couplings (in-
teractions) – perhaps between nearest neighbor only –
and the exercise requires us to find the equilibrium cor-
relation function between the spins, i.e. 〈σiσi+∆〉. In our
case however, we will be dealing with network “reverse
engineering.” The exchange interactions themselves will
be unknown, yet we will observe a mesh of correlations.
The problem will then be to compute the exchange in-
teractions from the measured correlations, with the hope
of finding a network defined by the interactions to be
simpler (for instance sparser) than the network of corre-
lations.

Let us formulate the problem more precisely. The
network consists of N nodes with activities σi, i =
1, . . . , N , which, we will for now assume, can take on
only two values, σi ∈ {−1, 1}. An experimental snap-
shot of the network activity is then described by a vec-
tor, $σ = {σ1,σ2, . . . ,σN}. Our data consist of patterns
D =

{
$σ1,$σ2, . . . ,$σT

}
, i.e. there are a total of T simulta-

neous measurements of the activities at all nodes, while
the network is in some stationary state. These samples
can be thought of as “instantaneous” snapshots of the
system or, in simulation, draws made during a Monte
Carlo sampling run. From the samples we can estimate
the moments of {σi} at successively increasing orders:
first order moments are N mean activity values, 〈σi〉;
second moments are N(N − 1)/2 correlations, 〈σiσj〉;
and so on. Because the system is noisy, there will be
fluctuations around the stationary state and not all T
patterns are going to be equal. We expect some patterns
to be more likely than the others, and the full descrip-
tion of the system in equilibrium must be contained in
a joint probability distribution, p(σ1,σ2, . . . ,σN ). Get-
ting a handle on this distribution is therefore our final
goal, and as we will soon discover, computing successive
approximations to it will give us the desired interactions
that underlie the observed correlations.

Except for a very small number of network nodes there
is no hope of directly sampling the distribution from the
data. Its size grows exponentially in N and for a modest
network of 10 binary nodes we would generally need to
estimate 210 ∼ 1000 parameters. To proceed, we clearly
need a simplifying principle.

!i

!j !k

FIG. 34 A small three-element section from a network of in-
teracting nodes. Suppose that σi modulates the activity of
σj and σk through some microscopic mechanism (denoted by
thick lines). We can expect to observe strong correlations be-
tween σi and σj , and between σi and σk due to this direct
influence. On the contrary, σj and σk are not directly cou-
pled, but can still show significant correlation (dashed line)
because of common control by σi.

A commonly used procedure is called Bayesian net-
work reconstruction (Friedman et al, 2004), and it is a
method from the more general class of graphical mod-
els. One starts by assuming a specific (initial) factoriza-
tion of the joint probability distribution over all nodes
and represents it as a graph G0, as in Fig 35. Remem-
bering that the activities are discrete variables, all con-
ditional distributions in the factorization can be repre-
sented as probability tables with unknown entries that
need to be fit from the data. Such fitting procedure
can be performed in many ways, and one can evaluate
the likelihood of the fit L(Gn)22. Of course, we have no
prior knowledge of what the correct graph factorization
of the initial distribution is, therefore a procedure is de-
vised that wanders in the space of possible graph topolo-
gies and tries a likelihood on each, producing a sequence{
L(G0), . . . ,L(Gn),L(Gn+1), . . .

}
23. The complexity of

each graph, e.g. the number of links, is penalized and
combined together with the fit likelihood into a scoring
function. The goal is to find the factorization of the prob-
ability distribution with the best score. Presumably, we
will then have discovered a simple graph that fits the
data well.
There have been successful network reconstructions us-

ing this approach (Sachs et al, 2005). The key simplifying
assumption that makes this approach feasible is that the
graph of interactions is sparse, i.e. that there are many
fewer real than potential interactions. Given such spar-
sity, the factorized probability distribution will have a
far smaller number of unknown parameters than the full
joint distribution, and there will be reasonable hope of fit-

22 Bayesian network reconstruction is an iterative procedure, and
at n-th step, we are considering graph Gn, hence the index.

23 This will usually be some sort of gradient descent or simulated
annealing procedure.



39

ting them from the data. The method allows interactions
of arbitrary complexity (as many arrows converging on a
single node as possible), but has some drawbacks. Firstly,
there is an exploding number of graph topologies over N
elements, and no hope in exhaustively trying all of them;
whatever algorithm one devises to explore the space of
topologies, it can get stuck in local extrema of the scor-
ing function. Secondly, due to computational constraints
not all kinds of graphs can be explored – usually one has
to exclude loops and this is a big handicap for biologi-
cal systems where feedback plays a very important role.
Finally, because we are looking for a tradeoff between
the best likelihood fit and the simplicity of the model,
we have to (arbitrarily) decide how to penalize complex
topologies. It is not a priori clear that one should simply
minimize the number of links and disregard other features
of the graph. In particular, we expect that for systems,
in which collective effects are driven by the presence of
weak interactions between lots of pairs, Bayesian method
will perform poorly.

1

2 3

5

4

FIG. 35 Bayesian factoring of the probability distribution
over five nodes. The edges imply conditional dependence, and
if two nodes are not joined by an edge, they are assumed to be
conditionally independent. This example graph G implies that
the joint probability distribution can be written as follows:
p(σ1, . . . ,σ5) = p(σ1)p(σ4)p(σ5)p(σ3|σ1)p(σ2|σ1,σ4,σ5). This
form has 1 + 1 + 1 + 2 + 8 = 13 free parameters in case of
binary variables (remember that conditional probability dis-
tributions are normalized), and is much simpler than the com-
pletely arbitrary p(σ1, . . . ,σ5), that for 5 binary nodes would
have 25 − 1 free parameters.

.

B. Maximum-entropy models: general introduction

Here we will try to take a radically different route to
the solution, motivated by inverse problems in statistical
mechanics. This methodology has been applied success-
fully to a diverse set of biological interacting networks,
such as neurons, human immune system, and signaling
networks (Schneidman et al, 2006; Tkačik, Schneidman et
al, 2009; Mora et al, 2010); the full analysis of the dataset
presented here can be found in Ref (Tkačik, 2007).

We start with the realization that with a limited num-
ber of samples, T , we can successfully estimate several
lowest-order moments of the sought-for joint distribution
p(σ1, . . . ,σN ) that generated the data, for example, the
means 〈σi〉 and covariances Cij = 〈σiσj〉 − 〈σi〉〈σj〉, or,
in general, a set of mean values of some of the statistics
of the unknown distribution, also called its “operators,”
〈Ôµ($σ)〉 (which can be arbitrary functions of {σi}). For
any reasonable choice of the operators there is an infi-
nite number of joint distributions over N elements with
the same mean operator values. Nevertheless, there is
only one distribution that also has maximum entropy,
i.e. there is one distribution that is as random as possi-
ble but still satisfies those statistics that have been mea-
sured in an experiment. This is the distribution that we
would like to find, and the maximum entropy principle
embodies the idea that any structure (or constraint) in
the distribution has to be induced by the measurement
(and not by explicit or hidden assumptions on our part).
In other words, we will approximate the true distribu-
tion p(σ1, . . . ,σN ) that we cannot measure in full (but
can estimate some of its statistics Ôµ), with the maxi-
mum entropy distribution that is as random as possible
but matches the true distribution in the values of all of
the measured statistics.
Formally, we are looking for the extremum of the fol-

lowing functional:

L[p($σ)] = S[p($σ)]−
∑

µ

gµ〈Ôµ($σ)〉 − Λ

∫
d$σ p($σ)

= −
∫

d$σ p($σ) log2 p($σ)− (62)

−
∑

µ

gµ

∫
d$σ p($σ)Ôµ($σ)− Λ

∫
d$σ p($σ).

The first term is the entropy of the distribution, and there
are µ constraints enforced by their Lagrange multipliers
gµ:

〈Ôµ($σ)〉p(&σ) = 〈Ôµ〉expt D, (63)

such that the average values of the operators over the
sought-after distribution p($σ) are equal to the averages
over data patterns, D =

{
$σ1, . . .$σT

}
. The Lagrange mul-

tiplier Λ enforces the normalization of the distribution.
It is easy to take the variation in Eq (62) and write the
explicit form for the maximum entropy solution:

p($σ) =
1

Z
exp

[
∑

µ

gµÔµ($σ)

]
. (64)

We call Eq (64) the maximum entropy distribution with
constraints 〈Ôµ〉.
Operators that constrain the distribution can be arbi-

trary, but we can gain further insight by restricting our-
selves to the moments of increasing orders (the activity
variables are still binary for simplicity). If one chooses
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Ôµ = σµ, then the mean values, 〈σi〉, are constrained,
and the maximum entropy distribution is the factor dis-
tribution:

p(1)($σ) =
1

Z
e
∑

µ gµσµ =
∏

µ

1

Zµ
egµσµ , (65)

Zµ = 2 cosh(gµ). (66)

This factor distribution is easy to compute, but it does
not include any interactions – each element behaves in an
independent fashion (similar to the mean-field theories in
physics). We could continue constraining the maximum
entropy distribution with correlation functions of higher
and higher orders. If we were to fix both mean values
and two-point correlations, the resulting distribution, Eq
(64), would have an Ising form:

p(2)(σ1, . . . ,σN ) =
1

Z
e
∑

i hiσi+ 1
2

∑
ij Jijσiσj ; (67)

this is the simplest distribution that contains pairwise
interactions between the network elements.

Constraining the three-point correlations would induce
a new term in the exponent of the form

∑
ijk Jijkσiσjσk.

There is clearly a “ladder,” where higher and higher or-
der constraints are imposed on the distribution, and as
a result, better and better maximum entropy approx-
imations are constructed. Let us call, then, p(k)($σ) a
maximum entropy distribution consistent with correla-
tions of order k and smaller, in line with our notation for
the factor distribution, p(1)($σ). In an N -body system,
the highest order of correlation is N , and p(N)($σ) must
therefore be the exact joint distribution – at this order
our approximation is the exact solution, with entropy
equal to S[p($σ)]. In Ref (Schneidman et al, 2003) it has
been shown that this sequence of ever better maximum
entropy approximations defines a unique decomposition
of multi-information of Eq (56):

I[p($σ)] =
N∑

k=2

I(k) (68)

I(k) = S[p(k−1)($σ)]− S[p(k)($σ)]. (69)

In words, the connected information of order k, I(k), is
the difference of the entropies of the maximum entropy
distribution consistent with correlations of order k − 1
and one higher order. For example, connected informa-
tion of the second order is the reduction of the entropy
due to pairwise interactions; one creates the best factor
(independent) model for the data and the best pairwise
(two-body Ising) model for the data, and compares their
entropies to see how much of the total structure in the
joint distribution has been explained by purely pairwise
terms.

C. Maximum-entropy models: pairwise interactions

How do we use this framework to model real networks?
Once we collected the measured correlations, we would

postulate the maximum entropy model of Eq (64) and
solve the equations that determine all couplings, Eq (63);
mathematically, we need to find {hi, Jij} that solve the
following equations:

p(σ1, . . . ,σN ) =
1

Z
e
∑

i hiσi+ 1
2

∑
i !=j Jijσiσj (70)

∂Z

∂hi
= 〈σi〉D (71)

∂Z

∂Jij
= 〈σiσj〉D, (72)

where the expectation values on the right-hand side are
measured in the dataset D.

This procedure yields two important results: (i) since
we have a generative model of the data, i.e. the proba-
bility distribution, we can calculate and predict any ex-
pectation value (especially of those statistics that were
not used as constraints), and compare it to experiment;
(ii) we can examine the couplings {Jij}, conjugate to the
constrained operators, and interpret these as interactions
that cause and explain the observed correlations.

As is done in Bayesian network reconstruction, once
we have computed the couplings, we can draw a graph-
ical model of the network with a link for each nonzero
coupling Jij connecting the elements σi and σj

24. These
weighted links are undirected as there is generally no way
of determining the “direction” of the interactions from an
equilibrium model.

Assumptions underlying maximum entropy recon-
struction are quite different from its Bayesian relative:
whereas in the latter case we assume sparse a network
of (arbitrarily complex) interactions, we assume an ar-
bitrarily dense network of simple (low order, e.g. pair-
wise or triplet) interactions in the former case. To ex-
plain all N(N − 1)/2 pairwise correlations one needs the
full matrix of N(N − 1)/2 exchange couplings Jij25, and
therefore no discrete topology on the graph is assumed
a priori. There is hence no problem of searching and
scoring the space of topologies, no exclusion of graphs
that include loops, and reduced dependence on the im-
plementation details of the algorithm. The drawback is
the ab initio exclusion of complex irreducible interactions
between many nodes. Clearly, the real question to ask is
about the approximation regime that is more suitable to
biological systems, if a general answer exists at all.

In practice, unfortunately, the maximum entropy net-
work reconstruction is made difficult by two problems.
One is technical – solving coupling Eqs (63) is very hard.

24 Therefore, for instance, the graphical decomposition of the prob-
ability distribution plotted in Fig 35 would correspond to the
distribution p = exp(−H)/Z, where H =

∑
i hiσi + J13σ1σ3 +

J145σ1σ4σ5 in the maximum entropy picture.
25 For higher orders, there is similarly no restriction on the structure

of, for example, three-point interactions, Jijk.
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In essence, one needs to solve

∂ logZ({gν})
∂gµ

= 〈Ôµ〉expt D, (73)

where Z is the partition function of the maximum en-
tropy distribution in Eq (64). This set of equations is
both nonlinear in couplings g and requires the evaluation
of the partition function, Z({gν}), or effectively a com-
plete solution of the statistical mechanics problem. The
other problem concerns the identification of the nodes
that are observed in the experiment. First, one will usu-
ally be able to take measurements of only a small subset
of the nodes comprising the network and we need to be
concerned about how the hidden nodes influence models
of visible nodes. Second, even if all nodes were identified,
there is an issue of “coarse-graining.” Is a node with two
states really an elementary, physical object that only has
two states (a protein with two phosphorylation states),
or is it in itself a complex with many states, but for which
a two-state model might (or not) be a valid approxima-
tion? We do not have time to systematically address
these issues in the lecture notes, but do wish to point
them out.
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FIG. 36 A diagram of MAP signaling network in human
CD4 T-cells, reproduced and simplified from Ref (Sachs et
al, 2005). Phosphorylation level of 11 white nodes was ob-
served; red and green numbers indicate points of intervention
(i.e. the change of external conditions C in which the network
operates). These chemical interventions change the state of
the whole network by locking the activity of the nodes on
which they act into activated (green) or deactivated (red)
state. Chemicals 0, 1 and 2 represent naturally occurring
stimulatory agents; 0 and 1 are present in all C, while 2 is
present in C = 2. The arrows represent experimentally ver-
ified chemical interactions; there are a number of known in-
teractions through intermediaries that are known, but not
plotted. Gray nodes were not observed in the experiment.

D. Reconstructing a biochemical network

Here we present a maximum-entropy-based approach
to biochemical network reconstruction following the steps
outlined in previously. We tackle these questions on the
set of 11 interacting proteins and phospholipids (jointly
referred to as biomolecules here) in a signaling net-
work of human primary immune system T cells. We
use data from Ref (Sachs et al, 2005), where approxi-
mately 600 single-cell measurements of the activity level
of biomolecules have been made for each of the 9 available
conditions C using flourescent cell cytometry; this dataset
has already been presented in Section V. The network has
been studied in detail and Fig. 36 shows the convention-
ally accepted interactions, placing the observed proteins
into their biological context.

We will assume that, given a set of N = 11 net-
work nodes, their interactions can be well-described as
occurring only between pairs or perhaps triplets, and
not as combinatorial interactions involving quadruplets
or larger groups. We’ll assess the validity of this assump-
tion at the end of the lecture; detailed checks are pre-
sented in Ref (Tkačik, 2007).

A typical experiment to which maximum-entropy net-
work reconstruction can be applied will yield a large num-
ber of simultaneous observations of N real-valued activa-
tion levels for each external stimulus. As a first step
in the analysis, we discretize the data into two binary
levels26. We illustrate the maximum entropy reconstruc-
tion by focusing on each of the nine experimental con-
ditions separately, and attempt to address the questions
presented above. It is possible to formulate maximum en-
tropy problem such that the network reconstruction takes
advantage of all experimental conditions simultaneously;
for details see Ref (Tkačik, 2007).

E. Analyzing a single condition

The data collected for conditions 1 and 2 describe the
activation levels of 11 biomolecules when the cells are ex-
posed to their natural stimulatory signals. If we focus on
each of the two conditions separately, we will be dealing
with draws from two stationary distributions. We first
discretize separately the data in each condition, and end
up with 11 bit binary words that represent fluctuations
around the steady state in that condition. Because the
nodes are functionally connected, the fluctuations are not
independent, and must reflect local couplings between

26 Discretization can be regarded as a form of data compression; the
original continuous data have some correlation structure, and as
quantization maps the data into the discrete domain, we would
like the structure to remain preserved. There are a lot of techni-
cal issues involved in discretization, especially when discretizing
into more than 2 levels; for clarity we skip these problems here.
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FIG. 37 Interactions Jij (color map) and biases hi (blue line)
for all external conditions C = 1 . . . 9, proceeding top down,
left to right, computed (both quantization and maximum en-
tropy reconstruction) separately for each condition. All inter-
actions Jij are drawn on the same scale, with red color indi-
cating positive and green color indicating negative couplings.
Conditions 1 and 2 represent cells exposed to the naturally
occurring stimulatory chemical signals; other conditions rep-
resent environments where “intervention” chemicals – which
are supposed to lock the activity states of certain nodes to
either “on” or “off” – have been added to the stimulatory
chemicals of condition 1.

nodes near the given steady state. Can we learn some-
thing from the correlated fluctuations in the activities?

Having quantized the data into two levels and calcu-
lated the correlations and mean values, we write down
the form of maximum entropy distribution consistent
with these operators; to be consistent with physics con-
ventions, let’s write σ̃i = 2σi − 1, such that σ̃1 = ±1
(σ̃i = −1 denotes the “off” state and σ̃i = 1 denotes the
“on” state):

p(σ̃1, . . . , σ̃N ) =
1

Z
exp





∑

i

hiσ̃i +
1

2

∑

ij

Jij σ̃iσ̃j




 .

(74)
We proceed to calculate the interaction map Jij and the
biases hi that explain the measured observables [Eq 73],
by using a numerical nonlinear equation solver27.

Figure 37 shows reconstructed interaction maps Jij
and biases for each condition’s data quantized and an-
alyzed separately28. Interestingly, both condition 1 and

27 There is a unique solution for the {hi, Jij} and the problem is
convex.

28 Our data was intrinsically continuous and was discretized into 2
levels. The biases hi that we compute simply reflect the overall
bias of the, e.g., node σ̃i to tend towards -1 vs 1. This is not really

2 exhibit a similar pattern of interactions, with those of
condition 1 being a subset of condition 2; moreover they
also agree with the conventional map of interactions in
Fig. 36, except for the interaction between 10 and 11
(p38, JNK) in condition 2. A possible explanation for
this interaction is the cross-talk in the MAPKK pathway
upstream of p38 and JNK: unobserved biomolecules that
couple pairs of observed proteins would induce effective
interactions between them. In general, the interaction
matrices are sparse, and most of the small coupling con-
stants can be set to zero with minimal change to the
distribution (not shown)29.

Note again that we are looking only at fluctuations
around a naturally stimulated steady state. These fluc-
tuations are much smaller then those induced by inter-
vening chemicals, which is presumably why we detect
only a subset of full interactions.

a property of the data, but of where we draw the discretization
thresholds; this is in contrast to the interactions Jij which truly
reflect the interactions in the data.

29 One starts with the smallest couplings and proceeds towards
bigger ones by setting them to zero and calculating the Jensen-
Shannon distance between such “pruned” and the original distri-
butions. For conditions 1 and 2, if all exchange interactions but
for the “skeleton” around the diagonal are set to 0, the Jensen-
Shannon distance will be around 0.015, i.e. one would need on
the order of 70 samples to distinguish the full maximum entropy
from the pruned distribution.
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FIG. 38 How much of the total multi-information in the dis-
tribution of activation levels does the pairwise model cap-
ture? For each of the 9 conditions on the horizontal axis, the
data is discretized into 2 levels and a pairwise (or three-body)
Ising model is constructed. The bar height is the total multi-
information of the distribution [Eq (56)]. The blue (green)
segment represents the information of the second (third) or-
der, I(2,3)[p(%σ)], of Eq (69). The error bars are entropy es-
timation errors from the direct estimation obtained by 100
repeated reestimations (Slonim et al, 2005).

How much of the complexity of the true distribution is
captured by the maximum entropy approximation? To
answer this question we look at the fraction of the multi-
information of the real distribution that is captured by
the pairwise model. As Fig. 38 demonstrates, in case
of condition 2 it recovers almost all of the 2.8 bits of
total information; for condition 1, however, the fraction
is around 70 percent out of the total of 1.5 bits30.

A test of the pairwise model involves comparing
the predictions about connected three-point correlations
〈(σi − σ̄i)(σj − σ̄j)(σk − σ̄k)〉 with values estimated from
the data, as shown in Fig. 39. Thee-point statistics have
not been constrained by construction in our model, and
are therefore a real prediction of the maximum-entropy
distribution. As expected, the match between predictions
and measurement is good in condition 2 (not shown),
while for condition 1 we see a single three-point pre-
dicted correlation deviating strongly from its measured

30 There might be larger systematic errorbars on experiments 1, 6
and 9 because the distribution seems considerably more uniform
than for other experiments and we are low on samples.

value. The corresponding biomolecules are σ2, σ3 and σ4,
namely PLCγ, PIP2 and PIP3, and they are suspected
to form a feedback loop [Fig 36]. To ascertain that it
is not only the observed correlation, but actually a true
triplet interaction between the molecules that generates
the discrepancy, we can build a new maximum-entropy
model consistent with three-point marginals. The corre-
sponding distribution has the following form:

H = −
∑

i

hiσ̃i −
1

2

∑

ij

Jij σ̃iσ̃j −
1

6

∑

ijk

Jijkσ̃iσ̃j σ̃k (75)

When we solve for the unknown {hi, Jij , Jijk} in the
distribution of Eq (75), the largest three-point interac-
tion term is J345. Moreover, in order to convincingly
show that it really is J345 that fixes the offending three-
point correlation (as opposed to all other triplet degrees
of freedom in Eq (75)), we construct yet another max-
imum entropy model: a pairwise Ising system that in
addition to all pairwise correlations constrains exactly
one three-point marginal, p(σ3,σ4,σ5), and has a sin-
gle three-point coupling, J345. The agreement between
prediction and observations is then restored up to third-
order in correlations, at the cost of one additional under-
lying interaction. Experimentally it is also known that
PLCγ hydrolyses its substrate PIP2 to produce PIP3;
furthermore it is suspected that PIP3 can recruit PLCγ.
The example analysis presented in this lecture sweeps
a lot of checks and details under the rug in order for
the lecture to remain straightforward; for details see Ref
(Tkačik, 2007).
In summary, we believe that the maximum-entropy

network reconstruction procedure offers a viable alter-
native to Bayesian network reconstruction. The theoret-
ical foundation provides a way of decomposing the total
information of a given distribution into a sum of posi-
tive terms [Eq (69)], each of which indicates the extent
to which maximum-entropy models incorporating succes-
sively higher order marginals recover the total complex-
ity (Schneidman et al, 2003). A failure to account for
the total information with a simple model is diagnostic
of complexity being unaccounted for in the model; to
pinpoint the problem, one compares the prediction and
measurement of next order correlations; hopefully, the
failure is localized and not distributed through the net-
work. If this is the case and fixing the failure requires the
introduction of a single new interaction, we might believe
that we have learned something new about the system. In
the presented example of the MAP cascade, the pairwise
model accounted very well for data in condition C = 2,
and less well in C = 1; but even in the latter case, an
addition of a single combinatorial three-point interaction
has lead to a considerably improved model. More im-
portantly, the analysis approach is not good for a single
system only, but is a principled framework that can in-
clude systematically more and more complexity until the
data can be accounted for.
In general, principled methods for inferring network

structure from the data are not yet widely used; part
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FIG. 39 Comparison between three-point connected correla-
tions measured from the data (horizontal axis) and predicted
by the pairwise Ising model (vertical axis). Due to small sam-
ple effects, there are error bars in the correlation estimates;
the distribution in red is the distribution of the three-point
connected correlations in a shuffled dataset, and the spread
in that distribution arises purely from small-sampling effects.
We see that three-point correlations are small with the excep-
tion of several elements, and all but one agree with the model
prediction. The mismatch is the three-body correlation be-
tween biomolecules 3, 4 and 5 (see main text).

of the reason is that the power of these methods ulti-
mately derives from the quality of the measurements. If
the experimental noise levels swamp the intrinsic noise of
the regulatory process, then the benefits of observing the
correlated fluctuations in the system are lost. In signal-
ing pathways and genetic regulation the network recon-
struction procedures deployed to date have mostly been
technical demonstrations that the approach is possible or
feasible, and its correctness was judged by comparison to
a manually curated “gold standard” network, assembled
from the literature.

F. Relation to neuroscience

In the case of the neural networks in the retina, true
new insight about how the network works was provided
by maximum-entropy models (Schneidman et al, 2006;
Tkačik, Schneidman et al, 2009). Recordings of neural
activities there have consistently shown that any pair of
neurons in close physical proximity in the retina has ac-
tivities that are weakly, but statistically significantly cor-
related (i.e. the average correlation coefficients in pairs
of neural spike trains were ∼ 0.05). It was usually as-
sumed that this meant that correlations are a small effect
and can safely be neglected, leading to an interpretation
that separate retinal ganglion cells are independent en-
coders of information about the light in the visual field.
However, when looking at larger and larger groups of

neurons together (not just pairs), it became increasingly
clear that the assumption of neural independence leads
to worse and worse predictions about how groups should
behave in comparison to the experiments; at groups com-
prising N = 10 neurons the mismatch was extremely
large.
Ref. (Schneidman et al, 2006) proceeded to fit maxi-

mum entropy models with pairwise interactions to groups
of up to 15 neurons. The resulting models accounted for
data very well, leading to a reinterpretation of the neu-
ral behavior, where a dense network of weak interactions
induces strong effects on how groups or populations of
neurons behave. These analyses were later extended to
groups of 40 neurons, and analogies could be made be-
tween the behavior of these inferred networks and the
theoretical models of frustrated collective behaviors (spin
glasses) in physics (Tkačik, Schneidman et al, 2009).

VII. TOWARDS A POSSIBLE NETWORK DESIGN
PRINCIPLE

In the last lecture, we will seriously consider the idea
that the function of biological regulatory networks is to
transmit information. Armed with the mathematical
concept of information introduced in Section IV, we will
be able to formalize the notion that a transcription fac-
tor present at concentration c drives a set of downstream
genes, {gi}, and that the expression levels of these genes
therefore jointly carry information about c. We will ar-
gue that there exist certain regulatory wiring diagrams
for the network c → {gi} along with the associated regu-
latory parameters (such as interaction strengths), which
increase, or even maximize, the information transmis-
sion between the transcription factor and its regulatory
targets. If we believe that the ability to transmit infor-
mation is under positive selection, then evolution might
drive real regulatory networks towards such maxima. We
end by proposing that such an optimization principle
could be a good candidate for a “design principle” for
biological information processing networks. We will use
measurements from early Drosophila development to il-
lustrate these ideas.

A. Early morphogenesis in Drosophila melanogaster

After fertilization, interesting processes are taking
place in the ellipsoidally shaped egg, about half a mil-
limeter in length, of the fruit fly. A single nucleus un-
dergoes 14 rounds of nuclear divisions, before large-scale
spatial rearrangements, easily observed under the micro-
scope, start happening approximately 3 hours after fertil-
ization. During these first hours, all nuclei are floating in
a shared pool of cytoplasm, in a structure that is known
as a syncytium; only at division cycle 14 do individual
nuclei cellularize.
In a groundbreaking series of genetic experiments, re-

searchers have shown that during these early develop-
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mental stages when all nuclei look identical and no differ-
entiated structures are visible, important cell-fate deter-
mination steps are already taking place. Looking along
the long axis of the ellipsoidal egg, known as the AP
(anterior-posterior) axis, one can see about 100 rows of
nuclei at cell cycle 14. These nuclei express proteins
(mostly transcription factors) that will confer cell fate:
nuclei belonging to various spatial domains of the embryo
express specific combinations of genes that will lead these
nuclei to become precursors of different tissues. Stainings
for relevant transcription factors have shown a remark-
able degree of precision with which the spatial domain
boundaries are drawn in each single embryo, and a stun-
ning reproducibility in positioning of these domains be-
tween embryos. Although probably a slight overgeneral-
ization, we can say that at the end of cell cycle 14, along
the AP axis, each row of nuclei reliably and reproducibly
expresses a gene expression pattern that is characteristic
of that row only – in other words, the nuclei have unique
identities encoded by expression levels of developmental
TFs along the long axis of the embryo.

Decades of research have focused on the following ques-
tions about early development, with the hope that what
is learned in Drosophila will shed light on how develop-
ment and cell differentiation proceed in general: (i) How
are the spatial domains established? What are the inputs
that break the initial symmetry where all nuclei start out
in the same state with the same genetic material? (ii)
What is the wiring diagram of a network that takes the
input information and processes it to the point where the
nuclei have their identity encoded in the expression pat-
tern of late developmental genes? (iii) What is respon-
sible for the precision and reproducibility of cell fate de-
termination? What are the limits to this precision? Are
there mechanisms that confer robustness to certain envi-
ronmental fluctuations, such as natural variation in tem-
perature or physical size of the egg? (iv) What are the
molecular mechanisms of regulation and cross-regulation
implicated in the developmental network? (v) What are
the mechanisms that allow the signals to propagate spa-
tially in the developing egg and that coordinate the re-
sponse of different nuclei, such that e.g. the expression
domains are not “noisy” or jagged?

The answers to some of these questions are certainly
known qualitatively, although we are still trying to make
the models and measurements fit quantitatively. Briefly,
the mother breaks the symmetry by depositing sources of
so-called maternalmorphogens, or diffusible transcription
factors, at key points of the embryo. For example, the
source mRNA for the bicoid protein that was discussed
in Section III, is positioned at the anterior pole of the
embryo. There, mRNA is translated into protein, which
diffuses along the AP axis and is continuously degraded,
establishing a steady-state concentration profile along the
AP axis which is well-fit by an exponential:

c(x) = c0e
−x/λ (76)

where x is the distance on the AP axis measured from the

anterior pole and λ = 0.25L (and L is the total length of
the embryo).
This spatial gradient is a chemical coordinate system:

it is thought that each nucleus can read off the local con-
centration of bicoid (and other morphogens), and based
on these inputs, drive the expression of the second layer
of developmental genes (called the gap genes, which we
denote by gi); these in turn lead to ever more refined spa-
tial patterns of gene expression that ultimately generate
the cell fate specification precise to a single-nuclear row.

B. Posing the question

Let’s attempt to put together all that we have learned
up to now about gene regulation, noise in gene regula-
tion and information theory. On one hand we can make
a simple back-of-the-envelope calculation: If there are
100 distinguishable states of gene expression along the
AP axis responsible for 100 distinct rows of nuclei, some
mechanism must have delivered I ≈ log2(100) ≈ 7 bits of
information to the nuclei. That’s the minimum amount
of information needed to make a decision about the cell
fate along the AP axis. Similar patterning mechanisms
also act along the other axes of the embryo, and if each of
the 6000 nuclei at cell cycle 14 were uniquely determined,
these systems together would have to deliver about 13
bits of information.
We also know something about the information flow in

genetic regulatory networks, and we can start by asking
not how much information the nuclei need, but how much
can be delivered. We have studied how bicoid regulates
one of the gap genes, hunchback, in Sections II and III.
We will first take a look at this single regulatory element
and ask if, given the measured noise, the element is used
optimally as part of the regulatory network. Then we
will generalize by assuming that c → {gi}, i.e. that bi-
coid input c regulates a set of (possibly interacting) gap
genes gi. The noise in gene expression was discussed in
Section III for the regulation of hunchback by bicoid; if
that can be taken as typical for other elements of the net-
work, we can indeed compute I(c; {gi}) and ask if that
quantity can approach the I ≈ 7 bits of information that
is needed on theoretical grounds.

C. Information transmission from bicoid to huncbback

By simultaneously observing the concentrations of bi-
coid (c) and hunchback (g) across the nuclei of an embryo,
one can sample the joint distribution P (c, g), see Fig. 40.
Usually it was assumed that hunchback provides a sharp,
step-like response to its input, bicoid; mathematically,
this would mean that the bcd/hb input/output relation
is switch-like, with an “on” and an “off” state, yielding
information transmission capacities of about 1 bit. How-
ever, is this really the case?
Using our estimation methods from Section IV we
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FIG. 40 Drosophila melanogaster embryo at cell cycle 14.
Nuclei stained in blue (see inset), bicoid stained in green and
hunchback stained in red, data reproduced from Ref (Gregor
et al, 2007). At this stage, about 6000 nuclei are present in the
embryo, of which about a quarter are visible under a single
microscope view. Each nucleus provides a joint quantitative
readout proportional to bicoid and hunchback intensities; the
data is shown in scatter plot below. Usually hunchback was
understood as having a single precise boundary that sepa-
rates the domain of high expression (“on”) from the domain
of low expression (“off”). We would like to use information
theory to make this statement precise and find out if the
bicoid/hunchback regulatory element really is just a binary
switch.

can measure directly how much information bicoid c
and hunchback g carry about each other. The result
Iexpt(c; g) = 1.5 ± 0.1 bits, where the error bar is com-
puted across 9 embryos. This is an experimentally de-
termined quantity, and the errors (apart from the esti-
mation bias) are related mostly to our ability to fairly
sample the distribution P (c, g) across the ensemble of
nuclei. Our sampling is not complete because a single
microscope view only records about a quarter of all nu-
clei, but we believe that that sampling is not very biased.
Another point to have in mind is that the computation
of I(c; g) reflects all statistical dependency in the prob-
abilistic relation c → g: both the direct regulation, as
well as any possible indirect regulation through an un-
known intermediary x, e.g. c → x → g. If, however, g
is regulated also by an input y independent of c, that is
{c, y} → g, and our experiment does not record y, then
we might be assigning some variability (or noise) to g, al-
though that noise really would be a systematic regulatory

effect caused by y. In this last case, we would measure
a smaller value of I(c; g) than would underestimate the
real precision in the system; the true value would only be
revealed upon recording the unobserved regulator y and
computing I({c, y}; g).
Having these caveats in mind, our first finding is that

the information transmission of 1.5 bits between bicoid
and hunchback that we measure from the data is larger
than 1 bit, which would be needed if bicoid/hunchback
transformation were a simple binary switch. To our
knowledge this was one of the first times that a quantita-
tive measure of “regulatory power” was computed for a
genetic regulatory element that was measured in a high-
precision experiment.
Given the noise in gene expression, can we put an up-

per bound of how much information could have maxi-
mally been transferred between bicoid and hunchback?
To do this, let’s start by writing:

P (c, g) = P (g|c)PTF (c). (77)

As shown in Sections III,IV, the term P (g|c) describes the
input/output properties of the regulatory element. From
experiment, we can determine the mean response ḡ(c)
of the regulatory element and the noise in the response,
σ2
g(c). These quantities have been plotted in Figs. 8,15;

if the noise is Gaussian (and to a good approximation, it
is), these two measurements determine P (g|c) fully.
To ask about the maximum achievable information

transmission given the measured input/output relation
P (g|c), we write the Lagrangean

L[PTF (c)] = I(c; g)− Λ

∫
dc PTF (c), (78)

where Λ is a Lagrange multiplier that will enforce the
normalization of PTF (c), while

I(c; g) =

∫
dc PTF (c)

∫
dgP (g|c) log2

P (g|c)
P (g)

(79)

is the mutual information, and P (g) =∫
dc PTF (c)P (g|c). We can now look for the opti-

mal distribution of inputs, PTF (c), which must satisfy:

δL[PTF (c)]

δPTF (c)
= 0. (80)

One way to solve this variational problem is numerically.
For details see Refs (Tkačik et al, 2008,b); here we only
report on the results.
We find that holding P (g|c) fixed as determined from

the data on bicoid/hunchback relationship, and optimiz-
ing PTF (c) numerically, yielded the maximal channel ca-
pacity of I∗(c; g) = 1.7 bits, see Fig. 41. Additionally
the optimal P ∗

TF (c) predicts the optimal distribution of
hunchback expression levels observed across the ensem-
ble of nuclei, through P ∗(g) =

∫
dc P (g|c)P ∗

TF (c), and
the optimally predicted distribution matches the mea-
sured distribution very well [Fig. 42]. The value found
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FIG. 41 The real (measured) information transmission and
the maximal information transmission (channel capacity) in
the bicoid/hunchback regulatory system. The input/output
relation P (g|c) = P (Hb|Bcd) is measured and held fixed. To
estimate the true information transmission of 1.5 bits, the ex-
perimentally sampled PTF (Bcd) is used to construct the joint
P (c, g). To find the channel capacity, PTF (Bcd) is varied
until the information-maximizing choice is found numerically,
denoted as P ∗(Bcd); this yields 1.7 bits of capacity. The opti-
mal choice for the input distribution also predicts the optimal
distribution of outputs, shown in Fig. 42.

for the maximal information transmission (channel ca-
pacity) shows that the real biological system is operat-
ing close to what is achievable given the noise, that is
Iexpt(c; g)/I∗(c; g) ≈ 90%. The high value is somewhat
unexpected given that we know that hunchback is regu-
lated also by other inputs, and that bicoid also regulates
other targets. Nevertheless this finding is a good mo-
tivation to consider taking maximization of information
transmission seriously as a possible design principle.

Can we comment on the values in the range of I ∼
1.5 − 1.7 bits? It turns out that the bicoid gradient is
read out directly by 4 gap genes: hunchback, kruppel,
giant and knirps. If each would independently be able
to encode ∼ 1.5 bits, then together this genes could con-
vey I(c; {gi}) ∼ 6 − 7 bits of information about bicoid
and would thus achieve the amount needed for AP pat-
terning. In this case, we would be able to claim con-
sistency with the back-of-the-envelope calculation that
requires at least this amount of information for the AP
specification. Before reaching such a conclusion, how-
ever, we need to resolve the following issues: (i) The
readout (gap) genes {gi} are probably not independent,
but have some redundancy, which will mean that they
convey less than the sum of their individual information
values about c; such redundancy, as we find below, can
be alleviated by proper network wiring; (ii) The next
layer of developmental cascade after the gap genes is not
regulated solely through the gap genes, but receives in-
puts from maternal morphogens directly; therefore, the
gap genes are not a single bottleneck through which the
information can flow; (iii) especially at the poles of the
embryo, gradients other than bicoid provide spatial infor-
mation about the AP position; (iv) our formulation of

FIG. 42 The measured (black) and predicted optimal (red)
distribution P (g) of hunchback expression levels across an en-
semble of nuclei in the Drosophila embryo. The expression
level g goes from 0 (no induction, posterior) to 1 (full in-
duction, anterior). A considerable fraction (∼ 30%) of nuclei
express intermediate levels of hunchback, and the noise in the
system is low enough that this intermediate expression level
could constitute a separate signaling level from 0 and 1; this
would be consistent with the observed information of 1.5 bits
that intuitively corresponds to 21.5 ∼ 3 distinguishable lev-
els of gene expression. The inset shows the same plot on the
logarithmic scale.

the problem assumes steady state gap gene readout from
a stable gradient; it is not clear that such steady state
is really reached in the timeframe necessary for nuclear
specification.
Further experiments and theory will be needed to suc-

cessfully address these, and possibly other, issues. De-
spite these concerns, we hope that the discussion provides
motivation for looking at quantities like I(x; c) – the in-
formation that the morphogen gradient encodes about
the physical location x; at I(c; {gi}), and at I(x; {gi}) –
the information that later developmental genes (like gap
genes) carry about the physical location. Information
processing inequalities also constrain the relationships
between these (directly measurable) quantities, provid-
ing an implicit check of whether we have missed some
unobserved regulatory pathway. Before proceeding, we
note that experiments that probe these quantities are
not easy, because they require us to measure simultane-
ously the expression levels of a number of genes, nucleus
by nucleus, in order to estimate both the mean response
ḡi(c)

D. The small-noise approximation

Analytically, the problem of Eq (80) is tractable in the
so-called small-noise limit, which we present here and use
to explore the optimal architecture of small regulatory
networks.

Having seen that in at least one biological system the
information transmission can come close to the channel
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capacity (maximum achievable transmission given noise),
we would like to elevate this finding to a principle: let us
find network wiring diagrams and interaction parameters
that transmit the most information from input TFs to the
regulated output genes.

We will consider networks where a single transcrip-
tion factor at concentration c can regulate a set of K
target genes {gi}, which may be interacting in a feed-
forward network. For now, we will not consider feedback
loops that can cause multistable behavior. It is clear that
without any constraint, the information transmission can
trivially be increased by decreasing the noise, and in bio-
chemical networks noise can be decreased arbitrarily by
increasing the number of signaling molecules, both on the
input side (c) and on the output side ({gi}). The crucial
idea is therefore to optimize information subject to bio-
physical constraints, i.e. subject to using a fixed number
of signaling molecules.
With these assumptions in mind, we sketch the deriva-

tion of information transmission in the following text;
for details see Refs (Tkačik et al, 2008, 2009b; Walczak
et al, 2010). For additional work on information trans-
mission in biochemical networks see Refs (Ziv et al, 2007;
Tostevin et al, 2009; Walczak et al, 2009).

The dynamics of gene expression for genes {gi} is given
by

τ
dgi
dt

= fi(c; {gj})− gi + ξi, (81)

where τ is the protein lifetime, ξi is the Langevin noise
term (explained in Section III), and f(c, {gj}) ∈ [0, 1]
is the regulatory (input/output) function, describing the
activation rate of gene gi, given the input c and the ex-
pression levels of all the other genes. Various regulation
functions were discussed in Section II; for combinatorial
regulation, the most flexible one that we have examined
was the Monod-Wyman-Changeaux (MWC) regulation
function:

fi(c; {gj}) =
1

1 + eFi(c,{gj})
, (82)

Fi(c, {gj}) = −ni
c log(1 + c/Ki

c)−

−
∑

j

ni
j log(1 + gj/K

i
j) + L̃i. (83)

In this model, every regulatory input to gi contributes
a term to the “free energy” F , and each such term is
parametrized by ni

j , the number of binding site for gj in
the promoter of gi, and Ki

j , related to the energy of bind-

ing to that binding site; as before, L̃ is the free energy off-
set between the “on” and “off” states when no transcrip-
tion factor is bound. If we want to avoid feedback and
multistability, we can always renumber the genes such
that each gene gi only depends on the input c and other
genes gj where j < i.
The regulation in a network of a single input c and K

target genes gi is then described by unknown constants
{L̃i,Ki

j , n
i
j , n

i
c,K

i
c}. When ni

j → 0, the regulation of

gene j by gene i is absent, that is, in the wiring diagram
the arrow from gj to gi disappears.
Before proceeding, we need also to compute the noise

in this regulatory network. The noise in gi is given by two
contributions: the output noise from generating a finite
number of proteins of gi, and the input diffusive noise
because gi is regulated by c and other gj . The noise in
our setup with K target genes is fully determined by a
K ×K covariance matrix:

Cij(c) = 〈(gi − ḡi(c))(gj − ḡj(c))〉, (84)

which can be computed from Eqs (83), as shown in
Refs (Tkačik et al, 2009b; Walczak et al, 2010).
In addition to computing this matrix, we find that

there is a single dimensionless parameter C describing
the dynamic range of the input, c ∈ [0, C], that will con-
trol the shape of the optimal solutions31. C is the maxi-
mal concentration for the input c, expressed in “natural
units of concentration,” c0 = Nmax/Daτ , i.e. the max-
imum number of independent molecules of the output
Nmax, divided by the relevant diffusion constant, typical
size of the binding site a and the integration protein life-
type τ . Large values for C mean that the output noise
is dominant over the input noise, while a small dynamic
range and therefore small C means that the input diffu-
sive noise in c is the dominant noise in the system.
With the covariance matrix in hand, the distribution

of outputs given the input c is a multivariate Gaussian:

P ({gj}|c) =
e−

1
2

∑K
i,j=1(gi−ḡi(c))C

−1
ij (gj−ḡj(c))

(2π)K/2
√
|C|

. (85)

In the language introduced in Section IV, this is the
“encoding” distribution. Suppose that we now ask the
“decoding” question: having seen the values of gap genes
{gi}, what is the most likely value of c that produced
them, and what is the variance in c? If the noise is small,
P (c|{gj}) will also be Gaussian, which can be found from
Eq (85) and the Bayes’ theorem:

P (c|{gj}) ∝ e
− 1

2

(c−c∗({gj}))
2

σ2
c ({gj}) , (86)

where c∗({gj}) is the most likely value for c that gives
rise to the observed {gj}, and

1

σ2
c (c)

=
∑

ij

dḡi
dc

C−1
ij

dḡj
dc

; (87)

σc is the effective noise level in the input that accounts
for all the noise in the system32.

31 This is true if all genes {gj} have the same parameters (such
as diffusion constant and degradation times), an approximation
that we make.

32 In small noise approximation one can reassign the noise from
the input to the output and vice versa through the mean in-
put/output relation, as shown in Fig. 13.
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Information I(c; {gj}) is

I(c; {gj}) = S[PTF (c)]− 〈S[P (c|{gj})]〉PTF (c), (88)

where the distribution of inputs, PTF (c) is unknown. We
want to find the maximal information transmission given
the known noise, therefore, we look for the maximum of
I with respect to PTF (c), just as we did in Eq (80), while
insisting that PTF (c) be normalized. We find that

P ∗
TF (c) =

1

Z

1

σc(c)
, (89)

that is, the system should optimally use those input levels
c more frequently that have proportionately smaller ef-
fective noise. Using this optimal choice, the information,
in bits, will be:

I(c; {gj}) = log2
Z√
2πe

(90)

This is as far as we can puch analytically; I(c; {gj})
still depends on the parameters {L̃i,Ki

j , n
i
j , n

i
c,K

i
c} that

determine the wiring diagram of the network and the
strengths of the regulatory arrows. The last remaining
task is, therefore, to numerically optimize Eq (90) with
respect to these parameters, and examine the structure
of optimal solutions.

E. Optimal network architectures

We can finally ask what are the optimal input/output
curves forK genes {gi}, regulated by the single input c, if
we do or do not allow for mutual interactions between the
outputs. These results are a function of C, the dynamic
range of the input.

Figure 43 shows the example solutions for K = 5 non-
interacting genes as a function of C. We see that there
are two regimes: at low C, the optimal solutions for all
5 genes have exactly the same parameters, and therefore
their input/output curves overlap perfectly. Why is this
behavior optimal, if at first glance all the genes appear
completely redundant? At low C, the input noise is dom-
inant, and the best strategy is to have all K = 5 genes
read out the input c and lower the input noise by aver-
aging: using K readouts should lower the effective noise
by a factor of

√
K.

At high C another strategy, called the tiling solution,
becomes optimal: here, each gene gi changes its expres-
sion considerably over some limited range of inputs, and
various genes gi encode various non-overlapping input
ranges; in other words, each gi “reports” on its own range
of inputs, while the other gj have either not switched on
yet, or are already saturated. We can explore the transi-
tion from redundant to tiling solutions in detail, and we
can carefully study the scaling of information capacity
I(c; {gi}) with the number of genes K in each solution
(Tkačik et al, 2009b).
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FIG. 43 The optimal input/output relations for K = 5 genes,
{g1(c), . . . , g5(c)} (shown in various colors), regulated inde-
pendently by a common input, c. The first 5 panels show
optimal solutions depending on the dynamic range of the in-
put, C, that is, when c ∈ [0, C]. As C is increased, the totally
redundant solution, where ḡ1(c) = . . . = ḡ5(c), slowly be-
comes non-redundant and transitions into the tiling solution
at high C, where each gi independently covers a subrange of
concentrations for the input c. The last panel shows the op-
timal values for the dissociation constants, Ki, of all 5 genes,
as a function of C = cmax/c0.

Although interesting from a theoretical perspective,
the redundant and tiling solutions are not what is
actually observed in the real regulatory networks in
Drosophila. In particular, when {gi} are independent,
the only possible input/output relations are sigmoid;
there are no stripe forming solutions, where gi would turn
on at some concentration c and turn off at some higher
concentration. Can such solutions emerge if the activat-
ing and repressing interactions between the output genes
are allowed?
Indeed we find that this is the case, as shown in

Fig. 44. If the interactions between two output genes
{g1(c), g2(c)} are allowed, the information maximizing
wiring diagram includes “lateral repression” between the
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two genes that are jointly activated by a common input.
This also generates apparent input/output curves that
are non-monotonic: g2 as a function of c is seen to exhibit
a stripe of activation. Further work has confirmed that
such stripe-like patterns optimize information transmis-
sion. Interestingly, a similar pattern of interconnections
(“lateral inhibition”) is known to occur in neural net-
works involved in early sensory processing. The function
of such connections is to decrease the redundancy in the
outputs – with no interconnections in the tiling solution,
when the gene with the highest Kd is saturated and fully
active, we know that all the other genes are also fully on
and saturated: they are therefore providing redundant
information. In other words, when there is no interac-
tions, the only patterns of activation (in a simplified pic-
ture when the genes are binary) are 000, 001, 011, 111 for
a case of 3 genes. Patterns such as 010 or 110 cannot be
accessed if there is no lateral interactions. If they exist,
however, these patterns can be generated and they can
encode additional useful information about their input c,
increasing information transmission.

Our understanding of information transmission in
transcriptional networks is far from complete. Never-
theless, the richness of solutions and network topologies
that emerges from a single optimization principle in a
one-parameter (C) problem is very encouraging, as is the
qualitative matching to the stripe-like solutions in early
Drosophila development. Further efforts need to be in-
vested into understanding multi-stability, feedback loops
and autoregulation, and in the incorporation of other bi-
ologically realistic detail. Hopefully, this (or some other)
design principle will in the future enable us to under-
stand the wiring of biological networks and derive it from
a mathematical measure of their function, rather than
reconstructing it back from painstaking molecular disas-
sembly of the network into its component parts.

Conclusions

Biology presents an interesting challenge to physicists:
many symmetries and simplifications applicable in or-
dered (but dead) systems are absent in biology, and this
complexity of life can be intimidating. On the other
hand, biological systems have evolved for function, and
as we make progress in formalizing this notion mathe-
matically, we hope to gain new insights and predictive
power. Assembling real physical models of biological in-
formation processing networks and connecting them to
the genotypes on one hand, and to their function and se-
lection on the other, will require tools from physics, biol-
ogy, population dynamics, computer science, information
theory and other disciplines, and this cross-disciplinary
nature should make such research attractive to new stu-
dents. I hope these lecture notes provide one interesting
entry point to this new and exciting field.
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FIG. 44 The optimal input/output relations for two genes
g1, g2 regulated by a common input c, with cross-regulatory
feed-forward interactions and Hill model of regulatory func-
tions. In case the activating arrow is allowed between g1 and
g2, the optimal solution (gray lines) is not different from a
non-interacting system, where c independently regulates g1
and g2: both the input/output curves as well as the infor-
mation transmission values are the same. In the case where
c activates g1 and g2, but g1 can repress g2, qualitatively
new input/output shapes can be optimal (black lines). Here,
the combinatorial regulation of g2 by g1 and c makes the ap-
parent input/output relation g2(c) behave non-monotonically
and produce a stripe.
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