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In the simplest view of transcriptional regulation, the expression
of a gene is turned on or off by changes in the concentration of
a transcription factor (TF). We use recent data on noise levels in
gene expression to show that it should be possible to transmit
much more than just one regulatory bit. Realizing this optimal
information capacity would require that the dynamic range of
TF concentrations used by the cell, the input/output relation of
the regulatory module, and the noise in gene expression satisfy
certain matching relations, which we derive. These results provide
parameter-free, quantitative predictions connecting indepen-
dently measurable quantities. Although we have considered only
the simplified problem of a single gene responding to a single TF,
we find that these predictions are in surprisingly good agreement
with recent experiments on the Bicoid/Hunchback system in the
early Drosophila embryo and that this system achieves !90% of its
theoretical maximum information transmission.

gene regulatory networks ! information theory

Cells control the expression of genes in part through tran-
scription factors (TFs), proteins which bind to particular

sites along the genome and thereby enhance or inhibit the
transcription of nearby genes. We can think of this control
process as an input/output device in which the input is the
concentration of TF and the output is the concentration of the
gene product. Although this qualitative picture has been with us
for !40 years (1), only recently have there been quantitative
measurements of in vivo input/output relations and of the noise
in output level when the input is fixed (2–11). Because these
input/output relations have a limited dynamic range, noise limits
the ‘‘power’’ of the cell to control gene expression levels. In this
article, we quantify these limits and derive the strategies that cells
could use to take maximum advantage of the available regula-
tory power.

To make precise our intuition about regulatory power, we
need to quantify the number of reliably distinguishable regula-
tory settings of the transcription apparatus, a task to which
Shannon’s mutual information (12, 13) is ideally suited. Al-
though there are many ways to associate a scalar measure of
correlation or control with a joint distribution of input and
output signals, Shannon proved that mutual information is the
only such quantity that satisfies certain plausible general re-
quirements, independent of the details of the underlying distri-
butions. We can then show that maximizing the mutual infor-
mation between the input and output of a regulatory
element—in effect, maximizing the control that the cell can exert
over the expression level of a gene—requires a quantitative
matching among the input/output relation, the noise level, and
the distribution of TF concentrations used during the life of the
cell. If the regulation of gene expression has been optimized,
these matching conditions provide parameter-free predictions
that connect several independently measurable quantities.

The general problem of optimizing information flow in reg-
ulatory networks is difficult. We begin here with the simplest
case, where a single TF controls the expression of a single target
gene; see also refs 14 and 15. In this case, our optimization

problem is very similar to that discussed by Laughlin (16), who
considered the optimization of information transmission from
light intensity to intracellular voltage in the fly retina. More
generally, ideas from information theory, including optimization
and matching, have been productive in analyzing many aspects
of neural coding (17–20), and it is attractive to think that similar
theoretical principles could apply to the regulation of gene
expression.

Although we have treated only the simplest version of the
general problem, we try to compare our theoretical results with
experiment. Recent work has characterized the input/output
relations and noise in the transformation between the Biocoid
and Hunchback morphogens in the early Drosophila embryo (11,
21). We suggest that, quite generally, the regulation of gene
expression in the developing embryo provides an interesting
testing ground for our ideas, because the information that is
transmitted in this case is precisely the ‘‘positional information’’
(22) that drives the formation of spatial patterns. Using the
measured input/output relations and noise in the Bicoid/
Hunchback system, our theoretical matching relations provide a
parameter-free prediction for the distribution of Hunchback
expression levels that we expect to see across the embryo, and the
observed distributions have a nontrivial structure that is in good
agreement with theory. We also reanalyze measurements of the
nucleus-by-nucleus relationship between Bicoid and Hunchback
levels (11) to show that the mutual information between these
two variables is !90% of the theoretical maximum. Although
there are many caveats, we view these results as strong support
for the idea that, in this system at least, genetic regulatory
mechanisms provide for optimal information flow.

Setting up the Problem
Gene expression levels (g) change in response to changes in the
concentrations of the relevant TFs (ci). In general, the gene
regulatory network is a noisy dynamical system, where TFs can
regulate other genes (including other TFs) or they can auto-
regulate themselves, and this makes both theoretical attempts
and experimental approaches to understanding the network of
regulatory interactions difficult. Some progress can be achieved,
however, by selecting biological systems where one gene re-
sponds mainly to a single primary determinant, a TF present at
concentration c, and by focusing on the steady-state response of
the gene of interest to its input. Although this may seem a drastic
approximation, it is also the framework within which most of the
recent measurements of noise in gene expression have been
performed (2–11).

The changes in the regulated gene often are summarized by an
input/output relation g!(c) in which the mean expression level is
plotted as a function of TF concentration (Fig. 1). This average
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relationship is a smooth function, but, because of noise, this does
not mean that arbitrarily small changes in input TF concentra-
tion are meaningful for the cell. The noise in expression levels
could even be so large that reliable distinctions can only be made
between (for example) ‘‘gene on’’ at high TF concentration and
‘‘gene off’’ at low TF concentration. To complete our description
of the system we thus also need a characterization of the noise.
Most generally, describing the noise means specifying the dis-
tribution of expression levels that can occur at a fixed TF
concentration P(g!c).

Intuitively, the statement that a gene is regulated by a TF must
mean that knowing the concentration c of the TF will tell us
something about the gene’s expression level g and vice versa. To
make this intuition precise, we introduce the mutual informa-
tion, I(c; g), between TF concentration and expression level,
which counts the (logarithm of the) number of distinguishable
expression levels achieved by varying c. If we measure the
information in bits (13), then

I"c; g# ! # dc PTF"c# # dg P"g!c# log2$ P"g !c#

Pexp"g#% , [1]

where PTF(c) is the distribution of TF concentrations the regu-
latory element is exposed to and Pexp(g) is the distribution of
expression levels that results from convolving the distribution of
TFs with the stochastic input/output relation:

Pexp"g# ! # dc P"g !c#PTF"c# . [2]

One way to think about PTF(c) is as the distribution that one
would recover if it were possible to collect and histogram the
measurements of the concentration c at regular intervals in time
while a cell lives undisturbed in its natural habitat, i.e., the
distribution of inputs that a wild-type cell generates in the course
of its life. Alternatively, one could imagine an ensemble of
genetically identical cells or nuclei, each of which is exposed and
is responding to a different level of input, c, drawn from a
distribution PTF(c), which is generated as a result of some natural
process, as in the case of morphogen gradients discussed below.

Although conceptually straightforward, such experimental esti-
mates of PTF(c) are in practice not so simple. As an example,
although much is known about the lac operon, we don’t know the
distributions of lactose and lac repressor concentrations expe-
rienced by Escherichia coli in its natural environment.

The distribution, P(g!c), of expression levels at fixed TF
concentration summarizes the physics of the regulatory element
itself, from the protein/DNA interaction, to the rates of protein
synthesis and degradation; this distribution describes both the
mean input/output relation and the noise fluctuations around
the mean output. The information transmission, or regulatory
power, of the system is not determined by P(g!c) alone, however,
but also depends on the distribution, PTF(c), of TF ‘‘inputs’’ that
the cell uses, as can be seen from Eq. 1. If this distribution and
the properties of the regulatory element are matched to each
other, the regulatory power of the cell will be maximized.

Matching the distribution of inputs to the (stochastic) input/
output relation of the system is a central concept in information
theory (13) and has been applied to the problems of coding in
the nervous system. For sensory systems, the distribution of
inputs is determined by the natural environment, and the neural
circuitry can adapt, learn, or evolve (on different time scales) to
adjust its input/output relation. It has been suggested that
maximizing information transmission is a principle that can
predict the form of this adaptation (16–19, 23). In transcriptional
regulation, by contrast, both the distribution of TF inputs and the
input/output relation are internal to the cell, and either one is
conceivably subject to adjustment on physiological or evolution-
ary time scales. Computationally, however, it seems appropriate
to think of the input/output relation as given (by experiment) and
to ask how the distribution of TF inputs (often unmeasured)
might be adjusted to find the maximal regulatory power, or
information capacity, of the genetic regulatory element. We
emphasize that although such a maximum might or might not be
realized by the cell, it can never be exceeded.

Solving the Optimization Problem
It is difficult to make analytic progress in the general calculation
of mutual information, but there are some limiting cases where
one can make progress and gain intuition. Here, we describe a
small noise approximation, and in the following section, we
consider the opposite limit of large noise. For the general case,
we have numerical methods which, as one would hope, give
results that join smoothly onto the low- and high-noise limits.

The expression level at a fixed TF concentration c has a mean
value g!(c), which we can plot as an input/output relation (Fig. 1).
Let us assume that the fluctuations around this mean are
Gaussian, with a variance "g

2(c), which itself depends on the TF
concentration. Formally this means that

P"g!c# !
1

&2#"g
2"c#

exp'$
%g $ g! "c#&2

2"g
2"c# ( . [3]

Let us assume further that the noise level is small. Then we can
expand all of the relevant integrals from Eq. 1 as a power series
in the magnitude of "g:

I"c; g# ! $# dg! P̂exp"g! # log2 P̂exp"g! #

$
1
2 # dg! P̂exp"g! # log2%2#e"g

2"g! #& % . . . , [4]

where . . . are terms that vanish as the noise level decreases and
P̂exp(g!) is the probability distribution for the average levels of
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Fig. 1. Transcriptional regulation of gene expression. The occupancy of the
binding site by TFs sets the activity of the promoter and hence the amount of
protein produced. The physics of TF–DNA interaction, transcription, and trans-
lation processes determines the conditional distribution of expression levels g
at fixed TF concentration c, P(g!c), shown here as a heat map with red (blue)
corresponding to high (low) probability. The mean input/output relation is
shown as a thick white line, and the dashed lines indicate ' 1 SD of the noise
around this mean. Two sample input distributions PTF(c) (Lower Left) are
passed through P(g!c) to yield two corresponding distributions of outputs,
Pexp(g) (Lower Right).
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expression (15). We can think of this as the distribution that the
cell would generate in the absence of noise:

P̂exp"g! # ) # dc PTF"c#&%g! $ g! "c#& [5]

! PTF"c ! c
*
"g!##*dg!

dc
*

c(c
*
"g!#

$1

, [6]

where c*(g!) is the TF concentration at which the mean expression
level is g!; similarly, by "g(g!) we mean "g(c) evaluated at c ( c*(g!).

We now ask how the organism can choose a distribution of TF
concentrations, PTF(c), to maximize the information transmis-
sion I(c; g). Eq. 4 shows us that, in the low-noise limit, the
information is most easily written in terms of the distribution of
average expression levels, P̂exp(g!), whereas Eq. 6 shows us that
this distribution is a simple (and invertible) transformation of the
input distribution PTF(c). Thus, although we are really interested
in adjusting the distribution PTF(c), we can equally well optimize
the information by adjusting P̂exp(g!) itself, and this variational
problem has a simple solution:

P̂*exp"g! # !
1
Z !

1
"g"g! #

[7]

Z ! # dg!
1

"g"g!#
. [8]

This result captures the intuition that effective regulation
requires preferential use of signals that have high reliability or
low variance—P̂exp

! (g!) is large where "g is small. The actual
information transmitted for this optimal distribution can be
found by substituting P̂exp

! (g!) into Eq. 4, with the result Iopt(c;
g) ( log2 (Z/)2#e).

Although we initially formulated our problem as one of
optimizing the distribution of inputs, the low-noise approxima-
tion yields a result, Eq. 7, that connects the optimal distribution
of output expression levels to the variances of the same quan-
tities, sampled across the life of a cell as it responds to natural
variations in its environment. To the extent that the small noise
approximation is applicable, data on the variance vs. mean
expression thus suffice to calculate the maximum information
capacity; fortuitously, variance in a gene product as the function
of its mean expression level is exactly the quantity of interest in
most of the transcriptional noise experiments. Note also that
details of the input/output relation, such as its degree of coop-
erativity, do not matter except insofar as they leave their
signature on the noise, and that, furthermore, we do not need to
know which microscopic noise sources contribute to what extent
to the total observed noise.

Recent experiments provide the data for an application of
these ideas. Elowitz and coworkers have measured gene expres-
sion noise in a synthetic system, placing fluorescent proteins
under the control of a lac-repressible promoter in E. coli (2).
Varying the concentration of an inducer, they determined the
intrinsic variance of expression levels across a bacterial popula-
tion as a function of mean expression level. Their results can be
summarized as "g

2(g!) ( ag! * bg!2, where the expression level g! is
normalized to have a maximum mean value of 1, and the
constants are a ( 5 $ 7 + 10$4 and b ( 3 $ 10 + 10$3. Across
most of the dynamic range (g! ,, 0.03), the small noise approx-
imation should be valid and, as discussed above, knowledge of
"g(g!) alone suffices to compute the optimal information trans-
mission. We find Iopt(c; g) ! 3.5 bits: Rather than being limited
to on/off switching, these transcriptional control systems could
in principle specify 2Iopt ! 10 $ 12 distinguishable levels of gene

expression. It is not clear whether this capacity, measured in an
engineered system, is available to or used by E. coli in its natural
environment. The calculation does demonstrate, however, that
optimal information transmission values derived from real data
are more than 1 bit, but perhaps small enough to provide
significant constraints on regulatory function.

When the noise is not small, no simple analytic approaches are
available. On the other hand, so long as P(g!c) is known
explicitly, our problem is equivalent to one well studied in
communication theory, and efficient numerical algorithms are
available for finding the input distribution PTF(c) that optimizes
the information I(c; g) defined in Eq. 1 (15, 24). In general, we
must extract P(g!c) from the experiment and, to deal with finite
data, we will assume that it has the Gaussian form of Eq. 3.
P(g!c) then is completely determined by measuring just two
functions of c: the mean input/output relation g!(c) and the output
variance "g

2(c). The central point is that, in the general case
where noise is not necessarily small, solving the information
optimization problem still requires only empirical data on the
input/output relation and the noise—regardless of whether the
underlying regulatory apparatus is a simple prokaryotic pro-
moter or a metazoan enhancer, we can treat it as a ‘‘black box’’
that hides the complicated physics and biology of transcriptional
control.

An Example from Embryonic Development
Motivation. The initial events of pattern formation in the embryo
of the fruit f ly Drosophila provide a promising testing ground for
the optimization principle proposed here. These events depend
on the establishment of spatial gradients in the concentration of
various morphogen molecules, most of which are TFs (22, 25).
To be specific, consider the response of the hunchback (Hb) gene
to the maternally established gradient of the TF Bicoid (Bcd)
(26–29). A recent experiment reports the Bcd and Hb concen-
trations in thousands of individual nuclei of the Drosophila
embryo, using fluorescent antibody staining (11). Nuclei stained
for Bcd and Hb were imaged during early nuclear cycle 14, before
large-scale spatial rearrangement due to gastrulation, but within
the time window during which the nuclear Bcd stably and
reproducibly (from cycle to cycle) reaches its peak values (21).
These nuclei constitute our ensemble of genetically identical
regulatory elements, exposed to spatially varying levels of Bcd,
which we imagine as being drawn from the concentration
distribution PTF(c). We assume that, during this period, Hb is
produced in response to Bcd and degraded, yielding a steady-
state response distribution, P(g!c), introduced in Eq. 1. These
considerations, then, make the connections between our infor-
mation theoretic computations with the experiment explicit.

There are additional factors that make this experiment especially
appealing for our analysis: First, both Bicoid (input TF) and
Hunchback (output) concentrations were measured simultaneously
in vivo; second, along its anterior–posterior axis, the embryo
establishes a natural graded variation in Bicoid concentration
spanning the full physiological range, to which Hunchback re-
sponds, quite unlike the lac case, where the response was induced
externally by IPTG; third, perpendicular to the anterior–posterior
axis, one can find many nuclei that are exposed to the same level
of input Bcd but generate slightly different Hb responses, providing
us with a direct estimate of the noise in gene expression; fourth, the
focus of the experiment was to explore how fluctuations in gene
expression can affect spatial patterning and, as a consequence, care
was taken to try to reduce or at least estimate fairly the systematic
sources of noise.

For the purposes of our discussion, the results of experiments
by Gregor et al. (11) can be summarized by the mean input/
output relation and noise level shown in Fig. 2. These data can
be understood in some detail on the basis of a simple physical
model (30), but here, we use the experimental observations
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directly to make phenomenological predictions about maximum
available regulatory power and optimal distribution of expres-
sion levels. Caveats in the connection of theory with experiment
are collected at the end of this section. We emphasize at the
outset, however, that our goals are rather different from current
discussions of models of spatial patterning; rather than trying to
trace the pattern of expression levels down to specific molecular
mechanisms, we are trying to see whether we can predict at least
some features of these patterns by assuming that they reflect
optimal solutions to the problem facing the organism.

Maximum Information Transmission. Given the measurements of
the mean input/output relation g!(c) and noise "g(c) shown in Fig.
2, we can calculate the maximum mutual information between
Bcd and Hb concentrations by following the steps outlined
above; we find Iopt(c; g) ( 1.7 bits. To place this result in context,
we imagine a system that has the same mean input/output
relation, but the noise variance is scaled by a factor F, and ask
how the optimal information transmission depends on F. This is
not just a mathematical trick: For most physical sources of noise,
the relative variance is inversely proportional to the number of
signaling molecules, and so scaling the expression noise variance
down by a factor of 10 is equivalent to assuming that all relevant
molecules are present in 10 times as many copies. We see in Fig.
3 that there is a large regime in which the regulatory power is well
approximated by the small noise approximation. In the opposite
extreme, at large noise levels, we expect that there are (at best)
only two distinguishable states of high and low expression, so that
our problem approaches the asymmetric binary channel (31).
The exact result interpolates smoothly between these two lim-
iting cases with the real system (F ( 1) lying closer to the small
noise limit, but deviating from it significantly. In particular, it is
interesting to note that in this regime, increasing the capacity
from the optimum achievable at F ( 1 by 1 bit would require a
substantial increase (of 6-fold), in the number of available
signaling molecules, whereas doubling it would require !20
times as many molecules.

In the embryo, maximizing information flow from TF to target
gene has a very special meaning. Cells acquire ‘‘positional

information,’’ and thus can take actions that are appropriate to
their position in the embryo by responding to the local concen-
tration of morphogen molecules (22). In the original discussions,
‘‘information’’ was used colloquially. But in the simplest picture
of Drosophila development (25, 32), information in the technical
sense really does flow from physical position along the anterior–
posterior axis to the concentration of the primary maternal
gradients (such as Bcd) to the expression level of the gap genes
(such as Hb). Maximizing the mutual information between Bcd
and Hb thus maximizes the positional information that can be
carried by the Hb expression level.

More generally, rather than thinking of each gap gene as
having its own spatial profile, we can think of the expression
levels of all of the gap genes together as a code for the position
of each cell. In the same way that the 4 bases (2 bits) of DNA
must code in triplets to represent arbitrary sequences of 20 aa,
we can ask how many gap genes would be required to encode a
unique position in the Nrows ! 100 rows of nuclei along the
anterior–posterior axis. If the regulation of Hb by Bcd is typical
of what happens at this level of the developmental cascade, then
each letter of the code is limited to less than two bits (Iopt ( 1.7
bits) of precision; because log2(Nrows)/Iopt ( 3.9, the code would
need to have at least four letters. It is interesting to note that
there are four known gap genes—hunchback, krüppel, giant, and
knirps (32)—which provide the initial readout of the maternal
anterior–posterior gradients.

We emphasize that in comparing the information capacity of
the Bcd/Hb system with the overall information needed for
anterior–posterior fate determination, we are making a sugges-
tion rather than drawing a conclusion. Although we tend to think
of each row of cells as adopting a unique and largely determin-
istic fate, which we can identify from the expression levels of pair
rule and other later genes in the developmental cascade (see, for
example, ref. 33), it is not known whether the gap genes convey
enough information to specify this fate, or whether other inputs
are essential. Our calculation does indicate, however, that the
limits to information transmission in transcriptional regulation
are significant on the scale of the information needed for
embryonic development, suggesting that the optimization of
information transmission is of direct biological relevance.

Thus far, we have emphasized the theoretical maximum

A B

Fig. 2. The Bcd/Hb input/output relationship in the Drosophila melano-
gaster syncytium at early nuclear cycle 14 (see ref.11). (A) Each point marks the
Hb (g) and Bcd (c) concentration in a single nucleus, as inferred from immu-
nofluorescent staining; data are from !11 + 103 individual nuclei across nine
embryos. Hb expression levels g are normalized so that the maximum and
minimum mean expression levels are 1 and 0 respectively; small errors in the
estimate of background fluorescence result in some apparent expression
values being slightly negative. Bcd concentrations c are normalized by Kd, the
concentration of Bcd at which the mean Hb expression level is half-maximal.
For details of normalization across embryos, see ref. 11. Solid red line is g! (c) (
cn/(cn * Kd

n), with n ( 5, and error bars are '1 SEM. (B) Standard deviation of
the noise in Hb expression level as a function of Bcd concentration; error bars
are '1 SD across embryos. The curve is a fit to "g

2(g! (c)) ( 'g! * (g! 1.8(1 $ g! )2.2

* &, with ' ! 2.5 + 10$3, ( ! 0.5, and & ! 4 + 10$4. This functional form has
a microscopic motivation discussed in ref. 30, but note that any smooth
phenomenological fit to the data would suffice.

Fig. 3. Optimal information transmission for the Bcd/Hb system as a function
of the noise variance rescaling factor F. The factor by which the number of
input and output signaling molecules has to be increased for the correspond-
ing gain in capacity is !1/F. Dashed and dotted curves show the solutions in the
small-noise and large-noise approximations, respectively. The real system, F (
1, lies in an intermediate region where neither the small- nor the large-noise
approximation is valid. Measured information Idata(c; g) shown in red (error
bar is SD over nine embryos).
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information transmission, given the measured noise levels. But
does the embryo actually reach this optimum? The experiments
of ref. 11 can be thought of as sampling the joint distribution of
Bicoid and Hunchback concentrations in the (many) nuclei of
the embryo, P(c, g). From such samples, we can estimate the
distribution itself and, hence, the actual mutual information
between the Bicoid and Hunchback levels; because it is possible
to obtain ,103 samples from a single embryo, the often chal-
lenging problems of finite sample size can be brought under
control by following the strategies described in refs. 34 and 35.
We find Idata(c; g) ( 1.5 ' 0.15 bit, where the error bar is a
standard deviation across nine embryos. This represents !90%
(0.88 ' 0.09) of the theoretical maximum.

One might worry that !90% of the maximum information
transmission is easy to achieve; after all, the input/output relation
is nearly switch-like, and many different inputs thus are mapped
to nearly identical outputs. In fact, were we interested in
transmitting just 1 bit, this intuition would be correct, and almost
any randomly chosen distribution of inputs would be sufficient.
However, a detailed analysis (15) shows that transmission of ,1
bit is quite difficult, and requires something close to the optimal
matching discussed here. Quantitatively, we find that if we
perturb about an optimum distribution and select perturbed
distributions that are readily distinguishable from the optimum
(technically, the Jensen–Shannon divergence between the two
approaches 1 bit), the information capacity of the perturbed
distributions rarely exceeds 1 bit, even if the optimal distribution
has a capacity of as many as 3 bits. Thus, the fact that the data
of ref. 11 demonstrate transmission of 1.5 ' 0.15 bits, which is
!90% of the optimum, means that the embryo must generate
distributions of expression levels whose detailed structure is
close to the predicted optimum. We will now test this prediction
directly.

The Distribution of Expression Levels. In Drosophila embryos,
Hunchback in each nucleus is responding to its local Bicoid
concentration, set during the natural process of morphogen
gradient establishment. If we picture this as a process where a
single nucleus with its Bcd/Hb regulatory element probes dif-
ferent Bcd concentrations along the anterior–posterior axis, we
can pose several deeper questions. Instead of plotting Hunch-
back expression levels vs. either position or Bcd concentration as
is customary, we can ask about the distribution of expression
levels seen across all nuclei, Pexp(g), as shown in Fig. 4. The
distribution is bimodal, so that large numbers of nuclei have near
zero or near maximal Hb, consistent with the idea that there is

an expression boundary—cells in the anterior of the embryo
have Hb ‘‘on’’ and cells in the posterior have Hb ‘‘off.’’ But
intermediate levels of Hunchback expression also occur with
nonzero probability, and the overall distribution is quite smooth.

We can compare the experimentally measured distribution of
Hb expression levels with the distribution predicted if the system
maximizes information flow, and we see from Fig. 4 that the
agreement is quite good. The optimal distribution reproduces
the bimodality of the real system, hinting in the direction of a
simple on/off switch, but also correctly predicts that the system
makes use of intermediate expression levels. In particular, the
matching of the probability weights in the ‘‘on’’ and ‘‘off’’ state
as well as the nonnegligible number of nuclei (!20%) experi-
encing the intermediate state of induction are nontrivial pre-
dictions of our calculation.

The smooth distribution of expression levels is at variance to
the common view of the Bcd/Hb system as serving only to
delineate a sharp spatial boundary, for which a single bit of
capacity would suffice. As noted above, direct computations
from the data show that information beyond 1 bit is present, in
amounts very close to the maximum possible value. This extra
information depends upon the detailed structure of the distri-
bution, which we see is correctly predicted by the theory. More
precisely, the intermediate levels of Hb can have meaning only
if the noise at those levels is sufficiently low, and it is this intuitive
condition that leads to the predicted matching of the expression
level distribution to the noise levels. These details are important,
because it is precisely in this concentration interval where the
embryo ultimately partitions the anterior–posterior axis with a
precision of one nuclear row.

Caveats. Our results on the Bcd/Hb system are extremely en-
couraging. The real system achieves !90% of the maximum
information transmission, and the observed distribution of
Hunchback expression levels is in rather good agreement with
the distribution predicted from our optimization principle, with
no adjustable parameters. To be fair, however, we collect here
several caveats.

We have treated the simplest version of our theoretical
problem, considering one input and one output, with no feed-
back. In fact, Hb activates its own expression (36), and this must
contribute to the shape of the input/output relation and perhaps
also to the noise level. But an important aspect of our analysis
is that the maximum mutual information depends on the ob-
served input/output relation and noise in the system, and not
directly on the molecular mechanisms that generate these char-
acteristics. Thus, the information capacity is the same no matter
whether (for example) the steepness of the input/output relation
is the result of intrinsic cooperativity among Bcd molecules or a
self-activating feedback loop, assuming that both mechanisms
also account correctly for the observed noise level. On the other
hand, if the gradient of maternally expressed Hb provides a
separate path for transmission of positional information to the
final zygotic expression level, then our discussion of one input
and one output may be too drastic a simplification.

Bicoid has multiple targets and many of these genes have
multiple inputs (37), so to fully optimize information flow, we
need to think about a more complex problem than the single
input, single output system considered here. How does this
affect, for example, our discussion of coding by combinations of
gap gene expression levels? Because Bcd acts as an activator for
all of the gap genes, their expression levels would tend to provide
redundant information about the local Bcd level, reducing the
available positional information below the nominal capacity
estimated above. On the other hand, several of the gap genes are
mutually repressive, and [as with lateral inhibition in the visual
system (17)] this serves to remove redundancy and increase
information transmission. It would be attractive if these inter-

Fig. 4. The measured (black) and optimal (red) distributions of Hunchback
expression levels. The measured distribution is estimated from data of ref. 11
by making a histogram of the g values for each data point in Fig. 2. The optimal
solution corresponds to the capacity of Iopt(c; g) ( 1.7 bits. The same plot is
shown on logarithmic scale in the Inset.
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actions within the gap gene network could also be seen as
solutions to an optimization problem.

Clearly, there are more steps to the developmental cascade
than the primary gradients and the gap genes, and several
interacting genes comprise each step. We emphasize that, de-
spite this complexity, information theory tells us that informa-
tion cannot spontaneously be created as it propagates through a
gene cascade; rather, information can only be lost due to noisy
processing. If maternal morphogens did not, to some extent, feed
directly into subsequent layers, i.e., the pair-rule or segment
polarity genes, in addition to controlling their primary gap gene
targets, the information transmission from the maternal gradi-
ents to the ultimate nuclear identities would be bounded from
above precisely by the transmission between maternal gradients
and the gap genes.

One can also raise concerns about the experiments with which
we are comparing. Measurement of the distribution of expres-
sion levels requires a fair sampling of all of the nuclei in the
embryo, and this was not the intent of the experiments of ref. 11.
Similarly, the theoretical predictions depend somewhat on the
behavior of the input/output relation and noise at low expression
levels, which are difficult to characterize experimentally, as well
as the (possible) deviations from Gaussian noise. A complete test
of our theoretical predictions will thus require a new generation
of experiments.

Concluding Remarks
The functionality of a transcriptional regulatory element is
determined by a combination of its input/output relation, the

noise level, and the dynamic range of TF concentrations used by
the cell. In parallel to discussions of neural coding (16, 19), we
have suggested that organisms can make maximal use of the
available regulatory power by achieving consistency among these
three different ingredients; in particular, if we view the input/
output relation and noise level as fixed, then the distribution of
TF concentrations or expression levels is predicted by the
optimization principle. Although many aspects of transcriptional
regulation are well studied, especially in unicellular organisms,
these distributions of protein concentrations have not been
investigated systematically. In embryonic development, by con-
trast, the distributions of expression levels can literally be read
out from the spatial gradients in morphogen concentration. We
have focused on the simplest possible picture, in which a single
input TF regulates a single target gene, but nonetheless find
encouraging agreement between the predictions of our optimi-
zation principle and the observed distribution of the Hunchback
morphogen in Drosophila. We emphasize that our prediction is
not the result of a model with many parameters; instead we have
a theoretical principle for how the system should behave so as to
maximize its performance and no free parameters.
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32. Rivera-Pomar R, Jäckle H (1996) From gradients to stripes in Drosophila embryogenesis:

Filling in the gaps. Trends Genet 12:478–483.
33. Gergen JP, Coulter D, Wieschaus EF (1986) Segmental pattern and blastoderm cell

identities. Gametogenesis and the Embryo, ed Gall JG (Liss, New York), pp 195–220.
34. Strong SP, Koberle R, de Ruyter van Steveninck RR, Bialek W (1998) Entropy and

information in neural spike trains. Phys Rev Lett 80:197–200.
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