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Abstract
We tested the hypothesis that aspects of the neural code of retinal ganglion
cells are optimized to transmit visual information at minimal metabolic cost.
Under a broad ensemble of light patterns, ganglion cell spike trains consisted
of sparse, precise bursts of spikes. These bursts were viewed as independent
neural symbols. The noise in each burst was measured via repeated presentation
of the visual stimulus, and the energy cost was estimated from the total charge
flow during ganglion cell spiking. Given these costs and noise, the theory of
efficient codes predicts an optimal distribution of symbol usage. Symbols that
are either noisy or costly occur less frequently in this optimal code. We found
good qualitative and quantitative agreement with the measured distribution of
burst sizes for ganglion cells in the tiger salamander retina.

1. Introduction

Optimization principles constitute a fundamental approach to understanding the structure and
function of the nervous system. By quantifying the performance of neurons, information theory
provides very general tools for constructing such principles. An intuitive design, especially
for the sensory periphery, is that a neuron strives to maximize the mutual information between
its input and output, subject to realistic constraints. Noise, either in the input or added by
the neuron, is a fundamental constraint. Several researchers have had success predicting how
the receptive fields of retinal neurons should be organized to maximize the transmission of
information about natural visual images (Barlow 1961, 2001, Atick 1992, van Hateren 1992).
This success might lead one to imagine that many neurons strive to maximize their information
transmission rate.

However, there is a difficulty: spiking neurons, which constitute the vast majority of
neurons in the vertebrate brain, produce action potentials at average rates far below the rate
that maximizes transmitted information. While axons can sustain precise firing at rates up to
3 Both authors contributed equally to this work.
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hundreds of spikes per second (Berry et al 1997, de Ruyter et al 1997, Buracas et al 1998,
Reinagel and Reid 2000, Kara et al 2000), many neurons fire much less frequently. For
instance, ganglion cells in the salamander retina fire 1–5 spikes s−1 under varied stimulation
(Berry et al 1997), neurons in the LGN of the cat fire 5–15 spikes s−1 in response to natural
movies (Stanley et al 1999), and pyramidal neurons in the rat cortex fire at 1–4 spikes s−1

(Schoenbaum et al 1999, Fanselow and Nicolelis 1999), to name just a few. Therefore, one
must conclude either that these neurons are not well designed for information transmission or
that other constraints are important.

In fact, neurons are some of the most energy intensive cells in the body (Wong-Riley
1989), and spikes comprise a significant portion of their energy usage (Siesjo 1978, Ames
2000, McIlwain and Bachelard 1985, Atwell and Laughlin 2001). This suggests that neural
codes might be constrained by a requirement of energy efficiency. Previous work has developed
a general theory of energy-efficient codes that predicts the optimal usage distribution of a set
of discrete, independent neural symbols, each subject to an energy cost and corrupted by noise
(Levy and Baxter 1996, Baddeley et al 1997, Balasubramanian et al 2001, de Polavieja 2002,
Schreiber et al 2002). We used this prediction to make a quantitative test of the hypothesis
that the distribution of symbols in the neural code of retinal ganglion cells is energy efficient.
Under a wide variety of stimulus conditions, the output of ganglion cells is a sparse set of
discrete firing events (Berry et al 1997). Each firing event is a tight burst that we view as
a composite neural symbol characterized by its number of spikes. The noise of each firing
event was measured by repeated presentations of the same stimulus, and the energy cost was
estimated by simulations of the ionic current flow during spiking. The theoretically optimal
distribution of burst sizes was found to be in both qualitative and quantitative agreement with
experiment—both noisy and expensive symbols were used less often.

Our work provides support to the hypothesis that energy costs are an important constraint
for the neural code implemented by retinal ganglion cells. However, as we discuss, further work
is necessary to compare the single parameter appearing in our model to the actual biophysics
of energy consumption. Perhaps the most interesting fact emerging from this work is the
importance of accounting for noise. The reduced frequency of noisy firing events in our data
is significant and correlates well with predictions from optimal coding theory.

2. Materials and methods

2.1. Experimental methods

Experiments were performed on isolated retinas from the larval tiger salamander (Ambystoma
tigrinum tigrinum). The retina was perfused with Ringer’s medium (110 mM NaCl, 22
mM NaHCO3, 2.5 mM KCl, 1.6 mM MgCl2, 1 mM CaCl2, 10 mM D-glucose), which was
oxygenated by continuously bubbling a 95/5% O2/CO2 mixture through it. Action potentials
from retinal ganglion cells were recorded using a multi-electrode array (see Berry et al (1997)
and Meister et al (1994) for further details) while the preparation was carried out at room
temperature. This temperature is realistic for tiger salamanders in their natural habitat (Roth
1987). The retina was stimulated with illumination from a computer monitor that was focussed
onto the photoreceptor layer.

Stimuli were drawn from a random flicker ensemble, in which the monitor screen was
divided into square regions and intensity values for each square were chosen every 30 ms
from a Gaussian distribution. The mean light level was in the photopic range for salamander
(7 mW m−2), and the temporal root-mean-squared fluctuation (contrast) was 35% of the mean.
This level of contrast approximates that found under more natural viewing conditions (van der
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Schaaf and van Hateren 1996). Experiments were performed using squares that ranged in size
from 134 µm, which was roughly the size of a ganglion cell’s receptive field centre, up to
1070 µm, as well as with spatially uniform stimuli.

Spike trains were recorded during 30 or 60 repeated presentations of stimulus sequences
lasting from 120 to 540 s under spatially uniform flicker or during 60 repeats of six, 30 s
stimulus segments having different spatial modulation. Total recording times ranged from 120
up to 270 min, with an average of 192 min. A total of 41 ganglion cells from four retinas
were recorded for long enough times so that the error in measuring their burst size distribution
was smaller than the probability itself (see section 2.6 for details). The majority (69%) were
fast OFF-type cells, identified by their unique reverse correlation to random flicker stimulation
(Smirnakis et al 1997). These cells resemble Y cells in the cat and M cells in the monkey. The
rest of the ganglion cells (31%) were slower OFF-types. In the tiger salamander, as in most
amphibians, the overwhelming majority (80–90%) of ganglion cells are OFF-type (Smirnakis
et al 1997, Roth 1987).

2.2. Firing event identification

Under random flicker stimulation, salamander ganglion cells respond in sparse, highly precise
firing ‘events’ (Berry et al 1997). Figure 1 shows typical spike trains recorded from a
salamander ganglion cell under two different kinds of checkerboard random flicker. Most
events were easily identified as single peaks in the firing rate flanked by periods of silence
(figure 1(C)). In fact, 89% of all event boundaries were set at times when the ganglion cell
was completely silent. However, in some instances, more ambiguous peaks in the firing rate
were observed. In order to provide a consistent definition of firing events, we identified event
boundaries as reproducible minima in the firing rate. For each minimum ν, the ratio of the firing
rate at its adjacent peaks (p1, p2) to that at the minimum was required to exceed a threshold
value,

√
p1 p2/ν > φ, with 95% confidence. The threshold was set to φ = 2; event boundaries

were rather insensitive to its value (see Berry et al (1997) for addition details). Once event
boundaries were drawn, all spikes between successive boundaries were assigned to a single
event. We denote the number of spikes at event number a on stimulus trial b as nab. If no
spikes were observed in a given trial, nab was zero. The average number of spikes in that event
is Na = 〈nab〉b, and the variance is var(Na) = 〈n2

ab〉b − 〈nab〉2
b.

2.3. Energy efficient neural codes

The properties of an optimally energy efficient neural code were defined in earlier work (Levy
and Baxter 1996, Balasubramanian et al 2001, de Polavieja 2002, Schreiber et al 2002). Here,
we imagine that a neural circuit maps stimuli deterministically onto a discrete set of desired
neural symbols {Y }, and that noise is added before the output of actual neural symbols {Z}
(see figure 3(A)). The goal of an energy efficient code is to find the probability pk of using
each output symbol zk that optimizes information transmission per unit metabolic cost. In the
absence of noise, the solution is a Boltzmann distribution:

pk = e−βEk (1)

where β is set such that
∑

k e−βEk = 1. However, noise profoundly alters the optimal symbol
distribution. One of the main contributions of Balasubramanian et al (2001) was to show how
noise can be incorporated into the theory of energy efficient codes,and to demonstrate that small
changes in noise levels can sometimes result in dramatic changes in the optimal probabilities
of symbol use. For example, in an energy efficient code we would expect inexpensive symbols
to be used more often. However, because of the competition with noise, it can happen that a
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Figure 1. Spike trains recorded from a salamander ganglion cell under 60 repeated presentations
of random flicker with (A) 534 µm checkers and (B) 134 µm checkers. (C) Firing rate as a function
of time, measured as a histogram over spike trains using a 3 ms time bin, for the 534 µm checkers,
exhibiting clear firing events. Event boundaries are shown as vertical, grey lines. Note that there
is an event boundary near time = 17.13 s, where the cell is not unambiguously silent.

cheap but noisy symbol is heavily suppressed. Hence it is of critical importance to carefully
measure and incorporate noise in biological systems. One of the primary purposes of this work
is to show how this is performed in the analysis of retinal coding.

Noise is expressed as a transition matrix Qk| j that describes the likelihood that the
intended message or presymbol y j emerges from the channel as the transmitted symbol zk .
Given this ‘noise matrix’, an iterative algorithm generalizing classic work by Arimoto and
Blahut (Arimoto 1972, Blahut 1972, 1987) computes the symbol distribution that optimizes
information transmission at a fixed average cost E , essentially by treating the number of
bits of information lost to noise as an additional incurred cost. By iteratively optimizing the
transmitted information subject to the fixed average energy cost E , the algorithm chooses an
optimal distribution q j for the presymbols y j entering the noisy information channel, leading
to transmission of the symbols zk with optimal probabilities pk = ∑

j Qk| j q j .
Using this algorithm, we can always find the probability distribution of coding symbols

that optimizes the information I they transmit about a sensory stimulus at a fixed average
cost E . Numerical optimization of I/E then yields the code that maximizes information
transmission per unit metabolic cost. The necessary ingredients of this model are the energy
cost of each output symbol, Ek , and the noise in each presymbol, Qk| j . A detailed description
of the algorithm appears in Balasubramanian et al (2001). All numerical optimizations in this
paper were carried out using the FindMinimum routine in the commercial software package
Mathematica 4.0. This routine uses the steepest descent method and finds minima to six digits
of precision, greater than necessary given the error bars on our data.

The energy efficient codes derived in this manner have three salient features that are
relevant for this study. First, more energetic symbols are suppressed in the optimal distribution.
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Second, noisier symbols are also suppressed. Both these facts are illustrated in panels B
and C of figure 3. Finally, a useful property of metabolically efficient codes is that the
distribution over symbols that maximizes bits per energy is invariant under rescalings of the
energy costs En → λEn , where λ is some fixed number (see (Balasubramanian et al 2001)
for discussion). This fact allows us to eliminate one parameter in our model; the linear energy
model En = a1 + a2n can be rescaled by a factor of 1/a1 to En = 1 + bn, while leaving the
optimal distribution unchanged. The resulting parameter b = a2/a1 might be interpreted as
the relative cost of a spike compared to the baseline cost of keeping the cell alive. However, it
might also be thought of as effectively including energy costs from other neurons in the circuit.

2.4. Classifying presymbols

In order to provide a consistent and statistically significant classification of firing events into
presymbols, we compiled the distribution of spike counts across repeated trials for each event
and used the following algorithm:

(1) Compare the number of observations of the most common event size B1 to the number
of observations of the next most common B2. If B1 exceeds B2 with 95% confidence
(assuming Poisson counting statistics), then the event arises from an integer presymbol
corresponding to the most common burst size. Most events (68%) were classified as
arising from integer presymbols. An example of the distribution of spike counts for an
event that was classified as arising from an integer presymbol is shown in figure 5(A).

(2) If B1 does not exceed B2 with statistical confidence, compare B1 to the observations of
the third most common event size B3. If B1 exceeds B3 with 95% confidence, then the
event is a half-integer presymbol corresponding to the two most common event sizes.
The vast majority of these events were split between successive spike counts, such as 1
and 2 spike bursts, accounting for 28% of all events. An example is shown in figure 5(B).
The remaining 0.2% of all events had bimodal burst size distributions, often between 0 and
2 spikes, shown in figure 5(C). Because the latter events were so rare, we simply treated
them as integer presymbols corresponding to the most common burst size.

(3) If B1 does not exceed B3 with statistical confidence, check whether the three most common
event sizes have successive values. If so, check if the most common burst size is flanked
by the next two most common. In this case, assume that the event is a noisier integer
event corresponding to the most common burst size (2% of all events fell in this category).
Otherwise, assume that this is a noisier half-integer event characterized by the two most
common burst sizes (2% of all events fell in this category).

(4) If the three most common burst sizes were not successive,we could not clearly characterize
the presymbol. As only 0.05% of all events were in this final category, we again assumed
that they were noisy integer events corresponding to their most common burst size.

The results section motivates the classification algorithm above in terms of the measured
characteristics of burst size distributions and noise matrices for different events.

2.5. Burst size distributions and noise matrices

For each ganglion cell, we compiled a burst size distribution P(z) from the spike counts
for individual events and trials, nab. Increasingly large bursts were increasingly rare, and
their probability consequently had large uncertainty due to random error. Therefore, in our
analysis we only included bursts up to a maximum burst size, zmax. We denote the number of
observations of burst size z in a single stimulus trial by N(z). The probability that a randomly
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selected burst in the trial has size z is then P(z) = N(z)/
∑

z N(z), where we only include z
up to zmax. Our criterion for choosing zmax was that ∼98% of all bursts were included. Over
our population of ganglion cells, zmax ranged from 4 up to 8 spikes, with an average of 5.0.

We compiled the noise matrix Qz|y by estimating which presymbol ya gave rise to each
firing event (see classifying presymbols) and adding the histogram of nab for event a over
repeated trials b to the row of Q corresponding to ya. We denote the number of observations
of burst size z given presymbol y as Lz|y , and the number of observations of presymbol y as My .
Each row of the noise matrix was separately normalized by the number of observed presymbols,
Qz|y = Lz|y/(My R), where R is the number of stimulus repeats. This normalization gives∑

z Qz|y = 1 as it should in order that Qz|y describe the probability that a given presymbol y
produces the output z. As discussed above, the measured burst size distribution was truncated
at a given zmax for each cell, which can create unwanted ‘edge effects’ in the theoretical
analysis of the energy optimal burst size distribution. In order to avoid these edge effects, we
kept burst sizes greater than zmax in the noise matrix. However, after the theoretical prediction
of the optimal burst size distribution P∗(z) was obtained, we truncated it at z = zmax and
re-normalized to unity,

∑zmax
z=1 P∗(z) = 1. This allowed us to compare the predictions of the

theory properly with the measured distribution P(z). To make this comparison quantitative,
we measured the chi-squared error between theory and experiment, normalized by the number
of degrees of freedom:

χ2 = 1
zmax − 2

zmax∑

z=1

(P∗(z) − P(z))2

var[P(z)]
, (2)

where var[P(z)] is the variance in the probability of measuring burst size z (defined below).

2.6. Error analysis

In making quantitative comparisons between optimal and actual neural codes, we must treat the
uncertainty in our measurements properly. Assigning error bars to the burst size distribution
is not trivial, because repeated presentations of the stimulus do not yield independent
measurements of the burst size distribution: these measurements are related to each other by
the noise matrix. However, we can use the fact that random flicker is completely uncorrelated
from one stimulus frame to the next. Therefore, the stimulus patterns that cause each type of
firing event occur independently and with a constant probability per unit time. The number of
presymbols of each type elicited by a stimulus sequence of fixed length will vary with Poisson
statistics:

var[My] = My . (3)

For each presymbol, variations in the number of output spikes observed on different stimulus
trials are also independent and obey Poisson statistics. This implies that variations in Lz|y , the
number of observations of z given presymbol y, are also Poisson:

var[Lz|y] = Lz|y . (4)

We can use equations (3) and (4) to find the error var(N(z)). By definition of the noise matrix,
N(z) = ∑

y Qz|y My = (1/R)
∑

y Lz|y . Therefore

var[N(z)] = (1/R)
∑

y

var(Lz|y) = (1/R)
∑

y

Lz|y = N(z). (5)

In order to find the error in the probability distribution over burst sizes P(z), we use standard
error propagation:
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P(z) = N(z)∑
z′ N(z ′)

(6)

var[P(z)] =
(

1∑
z′ N(z ′)

+
N(z)

(
∑

z′ N(z ′))2

)
var[N(z)] =

(∑
z′ N(z ′) + N(z)

(
∑

z′ N(z ′))2

)
N(z) (7)

As we have discussed, a crucial input to the theory is the experimentally measured noise
in each ganglion cell. Poisson variation in the number of presymbols y and the resulting
observations of outputs z imply that the entries in the noise matrix Qz|y = Lz|y/My R have
variances

var[Qz|y] = 2Lz|y
My R

= 2Qz|y (8)

where we have once again used standard error propagation. Since we use a numerical algorithm
to derive the metabolically optimal code, it is not possible to derive an analytic expression for
the error bars in the theoretical prediction. Furthermore, performing a complete numerical
error propagation is prohibitively time consuming. Instead, we have estimated the effects of
the measurement errors on the theory by propagating the most important uncertainties, namely
those in the diagonal entries of the noise matrix, through the algorithm that determines the
optimal metabolically efficient code. The resulting errors are reported in figure 7 by including
the maximum and minimum deviations in the predicted probability for each symbol when the
diagonal entries of the noise matrix were perturbed by plus or minus one standard deviation. In
the limit of small errors, this min–max error is similar to the result of standard error propagation.
Further discussion appears in the results.

2.7. Ion channel simulations

We studied the energy cost associated with electrical activity using a single-compartment model
of tiger salamander ganglion cells due to Fohlmeister and Miller (FM) (1997). This model
includes five membrane currents: voltage gated sodium (INa), voltage gated calcium (ICa),
delayed rectifier potassium (IK), inactivating potassium (IA) and calcium-gated potassium
current (IK,(Ca)). In addition to these ionic currents, the model has membrane leak and
capacitance, and includes calcium sequestration and pumping with a relaxation mechanism
having a single time constant.

All parameters were as given in table 1 and the text of Fohlmeister and Miller (1997) except
as specified below. The leak reversal potential was chosen as Vleak = −65 mV, so that after a
long period with Istim = 0, the membrane approaches a resting potential of V = Vleak. The
leak conductance was chosen to be ḡleak = 0.05 mS cm−2. (This is the value given in the text
of Fohlmeister and Miller (1997) and not in their table 1.) The time constant for the removal
of calcium from the intracellular space either by pumping out of the cell or by sequestering in
internal stores was chosen to be τCa = 50 ms. Finally, we assumed a cell radius r = 25 µm
and carried out all simulations at room temperature.

With these parameters fixed, we studied the energetics of spiking by stimulating the
model with brief current pulses following long resting periods. The charge flow in each ionic
channel was obtained by integrating the corresponding current as a function of time. The
ATP consumption in ganglion cell soma required for transporting this charge will be linear in
the amount of charge, allowing us to determine how the energy cost depends on the number
of spikes and time intervals between spikes in a burst. The results of these simulations are
described in the results.
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Figure 2. Burst size distributions for four representative salamander ganglion cells, showing
(A) pure exponential shape, (B) significant suppression of small bursts, (C) and (D) flattening of
the distribution for small bursts.

3. Results

3.1. Burst size distributions

Recordings were made from 41 ganglion cells in the larval tiger salamander retina while
stimulated with the diverse spatial and temporal patterns of light found in random flicker (see
the materials and methods section). Under random flicker stimulation, these ganglion cells
respond in sparse, highly precise episodes of firing (see figure 1; Berry et al 1997, Berry and
Meister 1998, Meister and Berry 1999). These firing ‘events’ were tight bursts containing
one to eight spikes with inter-spike intervals of 5–10 ms. Their first spike was elicited with
timing that typically jittered by ∼4 ms from one repeated stimulus presentation to the next.
The total number of spikes in an event typically varied by ∼0.5 spike. In between events, the
spontaneous firing rate was strictly zero. Events occurred at rates of 1–3 s−1, with inter-event
time intervals broadly distributed from 50 ms up to 3 s. Because of their high precision, each
firing event can serve as an individual visual message of high fidelity. Because of the long
inter-event time intervals and the consequently weak correlations between successive firing
events, each event can serve as an independent visual message. This led us to consider each
firing event as a composite coding symbol, characterized by its time of occurrence and total
number of spikes.

Because events with different numbers of spikes can encode different visual messages,
this paper focuses on the distribution of burst sizes used by retinal ganglion cells to represent
a broad ensemble of visual stimuli. Figure 2 shows such distributions for four cells along with
error bars that reflect the expected Poisson variation for stimuli drawn from the same ensemble
(see the materials and methods section). A characteristic feature shared by all cells is the sharp
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Figure 3. (A) Simplified schematic of our model of a sensory system. (B) and (C) Effects of
noise in the model: the optimal usage probability of each symbol is plotted for different levels
of noise. In both (B) and (C), there are six output symbols, and the energy cost of symbol k is
Ek = k. In (B), the noise matrix has the following ‘diagonal’ form: Pr(z|y) = 0, except for
Pr(z = k|y = k) = 1 − 2p for k = 1 . . . 6; Pr(z = k + 1|y = k) = Pr(z = k − 1|y = k) = p
for k = 2 . . . 5; Pr(z = 2|y = 1) = Pr(z = 5|y = 6) = 2p. The optimal usage distribution is
exponential when p = 0, showing suppression of energetically expensive symbols. As the noise
increases, there is a marked deviation from an exponential symbol distribution. In (C), the noise
matrix is of the same form as in (B), but with p = 0.1 for all k except k = 3, for which the noise
probabilities are varied. This panel shows that noise in a single symbol strongly suppresses the use
of that symbol in the optimal distribution. Results in (B) first appeared in Balasubramanian et al
(2001).

falloff of bursts of large size. An energy efficient code would behave in this way since large
bursts cost more energy. Some of the cells have the surprising feature of a suppression of small
bursts (figure 2(B)), and most show a flattening at small burst sizes (figures 2(C) and (D)).
Naively, this seems to point away from energy efficiency as an organizing principle for the
retinal code, since smaller bursts cost less energy. However, efficient coding also requires
that noisy symbols be used less frequently, and as we shall see, small bursts are suppressed in
precisely those cells where these bursts are not reliably produced from trial to trial.

3.2. Structure of the model

In order to assess the energy efficiency of the retinal code, we developed a simple model of a
sensory system in which the properties of an optimally energy efficient code could be solved
(Balasubramanian et al 2001). In this model, the action of a neural circuit was idealized as
occurring in three stages: stimuli in the external world {S} are detected by an array of sensors
and converted into neural signals {X}, these signals are encoded deterministically into a discrete
set of composite symbols {Y }, and finally noise is added before the output {Z} emerges (see
figure 3(A)).

This model idealizes the action of the retina by combining all types of noise into a
single stage, where the intended neural symbol Y is transformed into the actual symbol Z .
In particular, photon noise is lumped together with less well understood internal sources of
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variability in the retina. Because of this abstract representation of noise, the internal symbols
Y cannot be directly measured, nor can the noise be broken down into its distinct components.
While it would be interesting to have a model that allows for separate study of, say, the effects
on an optimal code of photon noise as a function of light level, we shall see that our approach
has the advantage that all of the noise parameters can be directly measured from data.

In the model, the output {Z} is a string of discrete, independent neural symbols
{z0, z1, . . . , zn}. Each symbol zk has an energy cost Ek associated with its production. In
the case of the retina, individual firing events are viewed as the output symbols. Firing events
are distinguished only by their number of spikes: z1 is a one-spike burst, z2 is a two-spike burst,
etc. We add a symbol z0 representing every 50 ms period of silence. (Our results display very
little sensitivity to the value of the time bin used to discretize periods of silence, as we have
checked by picking a variety of time bins.) Because spiking represents a significant energy
expenditure for a neuron, firing events with different numbers of spikes have significantly
different energy costs. In what follows, we argue that the energy cost of a burst is linearly
related to its number of spikes.

Given a set of costs {E0, E1, . . . , En} for the output symbols zk , and a noise matrix
Qk| j = Pr(zk |y j) which gives the probability that a presymbol y j yields an output symbol zk ,
we can calculate the distribution of symbols zk which optimizes the information transmitted
per unit metabolic cost (see methods) (Balasubramanian et al 2001). The theory predicts that
both noisy and energy expensive symbols are suppressed in the optimal code. For example,
figures 3(B) and (C) show a model with six input and six output symbols with energies Ek = k.
In the absence of noise, the symbol y j is transmitted as zk = y j , and bits per energy is
maximized when the usage distribution of outputs zk is exponential (pk = e−βEk ). Figure 3(B)
shows that the addition of uniform noise distorts the optimal symbol distribution, with a
particularly strong effect on the symbol y1. Figure 3(C) shows that adding noise only to y3

leads to marked suppression in its use, since this symbol is then not a reliable conveyor of
information. Indeed, it is shown in Balasubramanian et al (2001) that small changes in the
noise can result in large changes in the optimal distribution of output symbols. So, to study
efficient coding by a ganglion cell, we must carefully characterize its noise.

3.3. Noise in ganglion cells

Repeated presentations of the same input to the retina lead to a distribution of output burst
sizes for each firing event. Figure 4(A) plots the variance of the burst size distribution of a
given event against its mean for one ganglion cell. Most values have var(N) < 0.5, indicating
that the number of spikes in a firing event is precisely determined by the stimulus. The solid
line at the bottom of the graph shows the theoretical lower bound on the variance of events
with a given mean, obtained when the event uses only outputs n and n −1 with the appropriate
proportions. This theoretical lower bound drops to zero for integer values of the mean spike
number and rises to 0.25 for half-integer values. A corresponding pattern is seen for the actual
firing events: lower variance occurs near integer values of the mean spike number. This pattern
is demonstrated by the thick line in figure 4(A), which is an average over the observed variance
of all events as a function of mean burst size.

This difference between high and low variance events arises fundamentally from the nature
of the mapping between the continuous patterns of light occurring in the environment and the
discrete outputs of the retina. The set of all patterns of light constitutes a high-dimensional
space of stimuli, and we can view the retinal mapping as dividing stimulus space into regions
corresponding to presymbols {Y} (see figure 4(B) for a schematic). Noise has the effect of
mapping a given stimulus onto a nearby location in stimulus space. When the input starts out
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Figure 4. (A) Variance of the spike count in a firing event plotted as a function of average spike
number for 1043 events recorded from one ganglion cell. (B) Deterministic mapping of stimulus to
presymbol: noisy boundary versus reliable core. Visual stimuli occupy a large space, where each
point is a pattern of light intensity as a function of time (shown on far left). This stimulus space
{X} is mapped deterministically into presymbols {Y }, which are in turn mapped into the output
symbols {Z} by the noise matrix. The figure shows two regions of presymbol space which should
be mapped into one or two spikes, respectively, in the absence of noise. In the presence of noise,
stimuli that are mapped into the core of these regions will be reliably encoded into the same number
of spikes, while stimuli mapped into the boundary regions as marked will be readily corrupted,
being transmitted sometimes as one spike and sometimes as two. See the text for discussion.

near the boundary between two presymbols, noise will be much more likely to change the
resulting output symbol than if the stimulus is far from the boundary. For example, figure 4(B)
shows regions of stimulus space corresponding to one- and two-spike outputs. Inputs that lie
in the ‘core’ (unshaded) of each region will be mapped more reliably to output burst sizes,
while inputs that lie in the ‘boundary’ (shaded) regions will be noisier. As long as the outputs
of a neural circuit are discrete, there will exist boundary regions in the input space that are
more susceptible to noise.

3.4. Defining the noise matrix

The noise matrix in the model, Qk| j , describes the transition probability between presymbols
y j and observed burst sizes zk . The presymbols y j are idealized, noise-free versions of the
circuit’s desired output zk . As noise in the retina originates already at the level of photon
absorption by the photoreceptors, there is actually no place in the retinal circuit where one can
attempt to measure y j . However, the mapping from X → Y in figure 3 is deterministic, so we
can associate a unique value of y j with each firing event. Because every single observation of
a firing event is corrupted by noise, we must observe many instances of every firing event to
determine y. Our task is to use the distribution of burst sizes for each firing event to infer that
event’s presymbol.
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for a presymbol y to emerge as an output symbol z plotted in greyscale. For this cell, zmax = 5.

As the variability in spike number was very low, most firing events had a narrow, unimodal
distribution of burst sizes. Some of these distributions had their peak at a single spike
count, while others had a peak shared between two successive burst sizes. The former case
corresponds to a core or integer presymbol, with a value equivalent to the most common burst
size (see figure 5(A)). The latter case corresponds to a boundary or half-integer presymbol, split
between two successive burst sizes (see figure 5(B)). A small percentage of events had bimodal
burst size distributions (see figure 5(C)) or had peaks spread among three or more burst sizes.
These events were not well characterized by either integer or half-integer presymbols, but they
occurred so infrequently (<0.2% of all events) that their awkward classification should not
effect our results appreciably. The algorithm used to classify presymbols is described in the
materials and methods section. Figure 5(D) shows the typical structure of a noise matrix. The
block on the j th row and kth column represents the value of Qk| j in the shading depth—darker
colours represent larger entries. Note that integer presymbols are mostly mapped onto single
output burst sizes, while half-integer presymbols are mostly mapped onto two burst sizes. This
structure is simply a reflection of the relatively low noise in our measured spike trains.
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Figure 6. Total charge flow in the FM model plotted as a function of the number of spikes in a
50 ms period. For the delayed rectifier potassium current, a linear curve fit is shown as a dashed
line.

3.5. Energetics of spiking

In addition to the noise matrix, the second ingredient we need in order to compare the theory of
energy-efficient codes to experimental burst-size distributions is the energy cost of each neural
symbol. A significant component of the total energy cost of a neuron results from its electrical
signalling (Siesjo 1978, Laughlin et al 1998, Atwell and Laughlin 2001). In particular, action
potentials are accompanied by large ionic currents that must then be reversed by pumps at a
cost in energy. For instance, Na+/K+ ATP-ase, the most common pump in the nervous system,
uses one molecule of ATP to pump 3 Na+ out of the cell and 2 K+ in to the cell. By estimating
the total charge flow during a burst, we can consequently estimate the energy cost of that burst.

We studied a single compartment model of the tiger salamander ganglion cell developed
by FM (see materials and methods). Their model used six ionic currents with conductance
parameters set to closely match the cell membrane voltage measured during spikes and bursts
(Fohlmeister and Miller 1997). We excited the FM model with current pulses of increasing
duration and amplitude to produce bursts of action potentials. The total charge flow in each
of the channel types was computed for a variety of burst sizes by integrating the ionic current.
The results are displayed in figure 6, along with a linear fit to the data from the delayed-rectified
K+ current.

Clearly the charge flow, and hence the ATP consumption, is linear with burst size in the FM
model and insensitive to the time intervals between spikes in a burst. What is more, the total
charge flow associated with action potentials greatly exceeds the resting charge leakage through
the cell membrane. These results held for all the amplitudes and durations of injected current
that were studied. While there are certainly other costs and constraints relevant to biological in-
formation processing (see the discussion), this shows that the energy cost of producing bursts in
real ganglion cells is likely to be both large and linear in burst size. Therefore, it is reasonable to
assume such a linear energy cost model when assessing the energy efficiency of the retinal code.

3.6. Theory meets experiment

Accordingly, we assume that a burst of size n has a cost linear in n : En = E0 + Esn. Here,
E0 is interpreted as the cost of 50 ms of silence, and Es is the added cost of a single spike.
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Since codes that maximize bits per energy are invariant under rescalings of the cost model:
En → λEn (Balasubramanian et al 2001), we can rescale the costs by 1/E0 and arrive at

En = 1 + bn (9)

as a one-parameter model of the cost of a burst of size n. The energy slope b = Es/E0 is
the ratio of the cost of producing a spike to the cost of 50 ms of silence. Given the typical
∼5 ms refractory period between action potentials, a slope of b = 1 would imply that an action
potential is of order 10 times as expensive as an equal duration of silence.

With the measured noise and the above linear cost, we used the algorithm presented in the
materials and methods section to compute the energy-efficient code for different energy slope
parameters b. The number of zero symbols N(z0) depends on the time bin used to discretize
silence. Because our choice of a 50 ms time bin is arbitrary, we left the zero symbol out of the
burst size distribution that we attempted to fit with our theory. Furthermore, large bursts were
too infrequent to use in our analysis, so we truncated the distribution at a largest burst size
zmax (see materials and methods). Therefore, after computing the optimal distribution over
all output symbols in our model (0, 1, 2, . . .), we dropped the 0 as well as bursts with sizes
greater than zmax. We then renormalized the theoretical optimal distribution over finite sized
bursts (1, 2, . . . , zmax). This enabled direct comparison with the experimentally measured
distribution of burst sizes. For each cell in our data set we performed fits of the theory to the
experimentally measured distribution by varying the energy slope b and minimizing χ2.

3.6.1. Qualitative agreement. Figure 7 shows representative fits for four cells stimulated
by spatially uniform flicker and displays excellent qualitative agreement. For all cells, the
sharp falloff of large bursts was accurately reproduced by the theory. Most cells had some
suppression of one-spike bursts. Interestingly, these cells also had higher noise in the one-
spike bursts, which were consequently suppressed in the theoretical efficient code. Some cells
showed a marked dip in the use of small bursts (e.g. figure 7(B)). As shown, such dips were
also reproduced by the theory, again because of the less frequent use of noisy symbols in an
efficient code.

3.6.2. Single stimulus condition. Figure 8(A) shows a histogram of the goodness of fit,
expressed as χ2 per degree of freedom (see equation (2)), found for ganglion cells stimulated
by spatially uniform flicker. Whenever we refer to χ2 in the text it should be understood as χ2

per degree of freedom. Low χ2 values are obtained for all cells. The higher values typically
occur when the fit fails to match at one point leading to a large χ2 contribution. For instance,
note in figure 7(C) that χ2 = 7.2 due to a large mismatch in the five-spike burst, even though
the fit of theory to experiment looks quite good to the eye. Figure 8(B) shows a histogram
of the energy slope b values obtained from fits to the same cells. Most values fall around
b = 0.5–3.

3.6.3. Multiple stimulus conditions. We measured burst size distributions and noise under
random flicker stimulation with different checker sizes, ranging from 134 µm (smaller than
the typical receptive field centre) to 1070 µm. Previous work (Smirnakis et al 1997) has
shown that the retina adapts its function when the spatial scale of the visual stimulus changes.
We found that both the burst size distributions and their noise were different in each stimulus
condition. However, we might expect that the ratio of the energy cost of spiking to silence
should remain roughly constant. Therefore, as a further test of the hypothesis of metabolic
efficiency we performed fits of the theory to the experimentally measured burst distribution
under two or more stimulus conditions using a single value of the energy slope b.
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Figure 7. Curve fits of an optimally energy efficient code to the experimental burst size distribution
for four cells made by finding the best value of the energy cost parameter b. Dots with error bars
are the experimental data; the heavy central line is the fit. The thin upper and lower lines are
numerically estimated upper and lower ranges on the theoretical fit arising from propagation of the
error bars in the noise matrix through the theory (see the materials and methods section). Values
of (χ2, b) for cells in (A)–(D) are (1.6, 1.1), (5.1, 0.6), (7.2, 1.0) and (1.6, 2.6), respectively.

Figure 8(C) shows a histogram (black) of the goodness of fit for ganglion cells measured
under two different stimulus conditions. Most values of χ2 per degree of freedom fell near
one, again indicating good quantitative agreement. Figure 8(D) shows a histogram (black)
of energy slope values derived from these fits, with most values clustered around b = 0.5–1.
We also measured five ganglion cells under more than two stimulus conditions. Fits to their
burst size distributions yielded χ2 values similar to the cells measured under only two stimulus
conditions (figure 8(C), grey). Interestingly, their energy slope values were even more tightly
clustered around b = 0.7 (figure 8(D), grey).

Of course, separate fits to each of the different stimulus conditions will lead to somewhat
different optimal values of the energy slope b in each case. However, the error measure, χ2,
typically varies slowly with b, and as a result there is a single choice of b that gives good χ2 for
all the stimulus conditions. In this way the hypothesis of energy efficiency passes our multiple
stimulus condition test.

The effects of noise and energy. The good quantitative agreement between an optimally
energy efficient code and the actual retinal code requires that both the energy costs and noise
of neural symbols be taken into account. To demonstrate this point, we compared our model
to two others: one which neglects the noise of transmission through a channel, and another
which includes the empirical noise, but assumes all neural symbols have the same energy
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Figure 8. (A) Histogram of goodness-of-fit values, χ2, and (B) best energy slope values, b, for
ganglion cells stimulated by spatially uniform flicker. (C) Histogram of goodness-of-fit values, χ2,
and (D) best energy slope values, b, for ganglion cells stimulated by spatially modulated flicker.
For spatially modulated flicker, curve fits used the same energy slope b for stimuli from two spatial
scales (shown in black) or four spatial scales (shown in grey). The values derived from four spatial
scales (grey) are appended on top of those from two spatial scales (black) for clarity.

cost. As shown in figure 9(A), models neglecting the cost of transmission (dashed curve) fail
to capture the rarity of large bursts, while models neglecting noise (dotted curve) miss the
suppression of noisy small bursts. In contrast, the full model (solid curve) captures both the
suppression of large, expensive bursts and small noisy ones as seen in the data (dots with error
bars). Figure 9(B) compares χ2 of the fits to the data using the full and partial models. The
dark and open circles represent models that neglect noise and energy costs, respectively. It is
clear that a model incorporating both factors is a significant quantitative improvement.

To better demonstrate the connection between a symbol’s noise and its frequency in the
retinal code, we carried out the following procedure. First, we took the energy slope b for
which the optimal energy-efficient code best matched the data, as described above. Then, we
computed the distribution of symbols for an optimal code having the same energy slope b, but
no noise (see equation (1)). To express whether a given symbol is used more or less frequently
than expected by such an optimal, noiseless code, we defined the ‘relative probability’ as
the ratio between the measured burst size probability and that for the optimal noiseless code.
Figure 10(A) illustrates the calculation of relative probability for one ganglion cell. Now,
recall that the probability that a presymbol remains uncorrupted by noise is given by the
‘diagonal’ noise matrix element Qk|k . Then, ηk ≡ 1 − Qk|k is a measure of the noisiness of
the neural symbol zk . We calculated the ratio of each symbol’s noise level ηk to the average
of the noise levels of all the symbols for a given cell. This quantity, which we call the relative
noise, expresses whether a given symbol is more or less noisy than the cell’s other symbols.
Figure 10(B) plots the relative probability versus the relative noise for a set of burst sizes from
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Figure 9. (A) Experimental burst size distribution (circles) for a ganglion cell shown against the
full optimal model (dark curve) as well as models without noise (dotted curve) and without energy
(dashed line). The full model is seen to match the data significantly better than either partial model.
Respective χ2 values for this cell are 1.6 (full model), 7.0 (no noise) and 45 (no energy). (B) The
χ2 deviation between the burst size distribution of model and data for partial models without noise
(dark circles) and without energy (open circles) plotted against χ2 for the full model. The dashed
line shows the case where the partial and full models have the same error.

ganglion cells stimulated by spatially uniform flicker. A strong correlation between lower
noise and higher probability is seen. This effect is much stronger than proportionality, i.e. a
∼10% decrease in noise results in a ∼40% decrease in its usage frequency for most cells (see
dashed line). Thus, the decreased use of noisy symbols predicted by information theory is
reproduced in the experimental data.

4. Discussion

In summary, we have shown that one aspect of the neural code of retinal ganglion cells, the
distribution of burst sizes used to represent a broad stimulus ensemble, is consistent with the
principle of metabolic efficiency. Bursts that are noisy or energetically costly are used less
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Figure 10. (A) Illustration of the effects of noise. The top panel plots the burst size distribution
(solid circles) for a ganglion cell along with the burst size distribution for an optimal code with the
same energy slope b but no noise (open circles). The bottom panel shows the relative probability (di-
amonds), which is the ratio between the probability of each burst size in the data to the probability for
the optimal, noiseless model. (B) The relative probability of burst sizes plotted versus their relative
noise for ganglion cells stimulated by spatially uniform flicker (diamonds). Each symbol represents
one burst size for one cell. The dashed line with a slope of −4 is drawn as a guide to the eye.

frequently, as is found for an energy efficient code. By measuring the noise in each firing event
and estimating the energy cost in the soma up to one free parameter, we compared the actual
burst size distributions of ganglion cells to the distribution that optimizes the amount of visual
information transmitted per unit energy. Good agreement was found, even across multiple
stimulus conditions. Particularly interesting was the reduced frequency of noisy events relative
to more reliable firing events, as such neural symbols convey less visual information and hence
should be suppressed in an energy efficient code. These results lend weight to the hypothesis
that the structure of the retinal code is determined in part by the need for energy efficiency.
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Other kinds of models

Our results do not rule out explanations of a ganglion cell’s burst distribution other than energy
efficiency. For instance, some of the qualitative features of our data, such as the rarity of large
bursts, are consistent with a simple threshold-crossing mechanism, where large bursts require
a very strong stimulus that occurs infrequently in the random flicker ensemble. Recently, Keat
et al have shown that a model consisting of a linear filter followed by threshold crossing can
account for many features of the spike trains elicited by spatially uniform flicker (Keat et al
2001). However, a mechanistic description of the retinal code does not exclude an optimization
principle: regardless of whether any given optimization principle holds, there must always exist
some mechanistic explanation.

An optimization principle is a different kind of description. Its value lies in explaining
data with relatively few arbitrary parameters. In this respect, our model, with only one free
parameter, compares favourably with a detailed mechanistic model having 21 free parameters
(Keat et al 2001), although only four to six of these parameters of this model significantly
affect the burst size distribution. In addition, an optimization principle is not just an algorithm
for predicting aspects of a neural code; such a principle also provides a reason for why the code
is structured as it is. In other words, it seeks to explain the choice of operating parameter values
in a mechanistic description of the same phenomenon. Our results support the hypothesis that
retinal circuitry is configured to transmit more visual information per unit energy cost than
other possible configurations.

Relevance of energy costs

Why should retinal energy efficiency matter to an animal, considering that the retina comprises
only a small fraction of most vertebrates’ bodies? In fact, neurons are some of the most
energy-intensive cells in the body. For instance, the human brain accounts for 20% of daily
energy intake but only 2% of body mass (Rolf and Brown 1997). Electrical and chemical
signalling has been estimated to account for up to 85% of a neuron’s energy budget (Atwell
and Laughlin 2001). These data suggest that the use of energy efficient neural codes could be
quite important for an animal. Furthermore, the energy saved in the retina by an optimal code
may underestimate the total savings for the animal. Retinal spike trains lead to cascades of
synaptic currents and action potentials in the central brain, the costs of which might be reduced
by using an efficient retinal code. In addition, the retina employs much of the same molecular
machinery—from ion channels to biochemical signalling cascades—found throughout the
brain. As a result, mutations in this machinery that allow for greater energy efficiency in the
retina may simultaneously enable other parts of the brain to save energy.

One might also wonder why energy efficiency is important for ganglion cell spike trains,
because photoreceptors are known to be metabolically expensive, and variations in the neural
code considered in this paper do not affect this initial stage of the visual pathway. Ames
(1992) has made a detailed analysis of energy costs in the rabbit retina. He finds that while the
photoreceptors do cost more ATP to run, the ganglion cell layer uses anaerobic respiration, so
that its cost in terms of glucose consumption is comparable to the photoreceptor layer. Since
the ganglion cell layer does not receive a direct blood supply in either the rabbit or salamander
retinas, it is likely that the ganglion cell layer of salamander uses anaerobic respiration, too.
In addition, a simple estimate of the total membrane area of the optic nerve in the salamander
indicates that its energy cost may equal the entire retina for reasonable firing rates, and this
cost will be reduced by an efficient code.
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Previous work on energy efficiency

Energy efficiency has also been explored for neurons in the primary visual cortex (area V1) of
the cat and inferotemporal cortex (IT) of the macaque monkey by Baddeley et al (1997). They
found that the distribution of spike counts was very nearly exponential over a large range of
window sizes. As an exponential spike count distribution maximizes the entropy of the spike
train at fixed average firing rate (Levy and Baxter 1996, Baddeley 1996, Balasubramanian et al
2001), they interpreted this as evidence that the code of cortical neurons is optimized for energy
efficiency. This result held for a variety of stimulus conditions including natural scenes, white
noise and spontaneous firing. However, Baddeley et al (1997) did not include the effects of
noise in their analysis. As shown in Balasubramanian et al (2001), an exponential distribution
of spike counts only optimizes information at fixed energy when the noise is zero (see also fig-
ure 3(B)). Indeed, noise can dramatically modify the energy-efficient spike count distribution,
for example by heavily suppressing the use of inexpensive but noisy signalling patterns.

A subsequent study of IT neurons in the monkey by the same group (Treves et al 1999)
showed that only a minority of recorded cells (14% during natural viewing and 25% during
a fixation task) had exponential spike count distributions. Many of the cells showed a strong
suppression of the smallest spike counts, as is also seen for retinal ganglion cells (figure 2).
De Polavieja (2002) analysed this data using the method of Balasubramanian et al (2001) to
incorporate the effects of noise on the distribution of firing rates that optimized information at
fixed energy. Here, noise was modelled phenomenologically with a single fit parameter. Noise
suppressed the usage of low firing rates, giving good agreement with the experimental data.

Our analysis improves on previous efforts in two ways. First, we divided the spike train
into firing events. This serves to minimize the correlations between successive coding symbols,
so that their information content is nearly independent. In contrast, when the spike train is
arbitrarily divided into fixed time windows, short-range correlations due to the refractory
period and the tendency to burst are ignored. This typically leads to an overestimate of the
information contained in each symbol as well as an overestimate of their noise. Second, we
directly measured the neural noise, so that its effects can be incorporated without fit parameters.
Direct measurement of the noise is important for retinal ganglion cells, because individual cells
display a great variety of noise characteristics. This variety was found to be very well matched
by the usage of burst sizes (see figure 10).

A drawback of measuring the noise is that it requires many repeats of the same stimulus.
As a consequence, it is much harder to sample the ensemble of stimuli in the finite duration
of an electrophysiological recording. This problem is particularly acute for natural stimuli, as
the variety of this ensemble is huge and not well characterized. In this regard, the approach
of focusing only on the entropy can make immediate progress for visual neurons under more
natural stimulation (Baddeley et al 1997). For our analysis to be extended to the case of natural
stimulation, it will be necessary to simplify the description of a neurons noise, such that fewer
stimulus repeats are needed to measure it.

Future directions

Our analysis would benefit from several extensions. The first is developing a model that
explicitly represents time. Because our model treats the spike train merely as an ordered list
of firing events, it leaves out all of the information contained in the exact time at which
each event occurs. In addition, we were forced to use an arbitrary time bin, 50 ms, to
identify periods of silence as a zero-spike burst, which prevented us from predicting the overall
firing rate of a ganglion cell. Other important extensions include testing energy efficiency for
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different functional types of ganglion cells, different species, and more stimulus conditions, to
assess the generality of our result. Finally, our observation of the reduced frequency of noisy
events relative to more reliable firing events brings up an interesting question of mechanism:
Can ganglion cells detect and adapt to their own noise dynamically, or alternatively are their
operating conditions fixed in such a way as to be well matched to their noise characteristics?

It is worth remembering that the optimization principle used in this paper need not be
interpreted as energy efficiency. Strictly speaking, we have only shown that the distribution
of ganglion cell burst sizes maximizes information transmission subject to a cost that is
proportional to its number of spikes. It is very intuitive to associate this cost function with
metabolic cost. However, a similar distribution of burst sizes results from the constraint of
maximizing information transmitted in a fixed window of time (de Polavieja 2002). Other
intuitive constraints on neural signalling might also yield a similar cost function. Further
exploration is necessary to distinguish between these possibilities. In particular, it is essential
to tie the single parameter in our model to the detailed biophysics of retinal information
transmission.
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