Minsu Park

minsu@sas.upenn.edu • +1 (609) 356-9011

EDUCATION	University of Pennsylvania, Philadelphia, Pennsylvania		
	 PhD Candidate, Physics and Astronomy Thesis Advisers: Prof. Bhuvnesh Jain, Justin Khoury Thesis Title: "Statistical and Probabilistic Arguments About a Non de Sitter Universe" GPA: 3.96/4.00 	Sep 2020 – Aug 2025	
	Princeton University, Princeton, New Jersey		
	 Bachelor of Arts in Physics, Cum Laude; Minor: Computer Science Thesis Adviser: Prof. Paul Steinhardt Thesis Title: "Constructing a Classically Stable Non-singular Cyclic Cosmology" GPA: 3.77/4.00, Departmental GPA: 3.85/4.00 	Sep 2016 – Jun 2020	
RESEARCH	Department of Physics and Astronomy, University of Pennsylvania		
EXPERIENCE	 Graduate Researcher in Weak Lensing and Data Science Group Adviser: Prof. Bhuvnesh Jain (Co-Director of the Penn Data Driven Discovery Initiative) Leveraging higher-order statistics, neural networks, and Gaussian processes to optimize parameter inference Developing methodologies motivated from information theory for next generation statistical analyses Generating large simulated datasets to build and test simulation based (likelihood free) inference pipelines 		
	 Graduate Researcher in Particle Cosmology Group Adviser: Prof. Justin Khoury Applying insights from neural network loss surfaces to study high dimensional energy landscapes in string theory Devising novel probes of mean first passage time in cosmic inflation using graph theory Unlocking interdisciplinary insights with network scientists and biophysicists 		
	Army Air Defense School, Republic of Korea Army (ROKA)		
	 Scientific Researcher in Weapons Development Group (Sergeant, E4) Jun 2022 – Dec 2023 Approximated solutions to non-convex optimization problems with neural networks and random forests Developed software to speed up real time decision making while not sacrificing performance Advised the Korean military's policy and strategy regarding machine learning and military data 		
	Department of Physics, Princeton University		
	 Undergraduate Research Assistant Advisers: Prof. Paul Steinhardt, Duncan Haldane (2016 Nobel Laureate), Simone Giombi Produced algorithms for analyzing numerical simulations of condensed matter systems and expanding universes Diagnosed numerical stability of Runge-Kutta and Lanczos algorithms Utilized high performance computing resources for intensive simulations and large datasets 		
	Department of Astrophysical Sciences, Princeton University		
	 Undergraduate Research Assistant Jun 2018 – May 2020 Advisers: Prof. David Spergel (President of the Simons Foundation), Jo Dunkley Constructed physical models of dark matter interaction and neutrino scattering Performed Bayesian inference of cosmological parameters with respect to various astrophysical datasets Identified statistical anomalies in data using Markov Chain Monte-Carlo and other Bayesian model comparison tools 		
HONORS	 Best Research Award from the ROKA TRADOC Commanding General 	Dec 2023	
	 Allen G. Shenstone Prize in Physics 	May 2020	
	 Cosmic Controversies Best Poster 	Oct 2019	
	 International Theoretical Physics Olympiad for Undergraduates Second Place W 	inner May 2019	
	Allen G. Shenstone Prize in Physics	Jun 2018	
SKILLS	• Proficient in Python, Fortran, LATEX, Mathematica, TensorFlow, Unix, and Java		
	 Experience working with C, C++, parallel computing, and PyTorch 		

- Park, M., Khoury, J., Wong, S. "Distance Conjecture and Random Field Inflation." In Prep. • Random matrix theory and Bayes' rule inform where we are in the string theory landscape.
 - Park, M., Gatti, M., Jain, B. "Dimensionality Reduction Techniques for Statistical Inference in Cosmology." Submitted to Physical Review D.
 - CCA is the best performing dimensionality reduction scheme for simulation based inference.
 - Kreisch, C. D., Park, M., Calabrese, E., Cyr-Racine, F., Dunkley, J., et al. "Atacama Cosmology Telescope: The persistence of neutrino self-interaction in cosmological measurements." Physical Review D 109.4 (2024).
 - Self-interacting neutrinos point to an anomalous signal from the Atacama Cosmology Telescope.
 - Goldstein, S., Park, M., Raveri, M., Jain, B., and Samushia, L. "Beyond dark energy Fisher forecasts: How the Dark Energy Spectroscopic Instrument will constrain LCDM and quintessence models." Physical Review D 107.6 (2023).
 - Forecasting for both expected and outlier cases, DESI will likely not find evidence of quintessence.
 - Dacunha, T., Raveri, M., Park, M., Doux, C., and Jain, B. "What does a cosmological experiment really measure? Covariant posterior decomposition with normalizing flows." Physical Review D 105.6 (2022). • Information geometry with normalizing flows finds the right parameters to infer from data.
 - Park, M., Raveri, M., and Jain, B. "Reconstructing guintessence." Physical Review D 103.10 (2021). • Non-parametric approaches are useful probes of weak quintessence signals for further investigation.
 - Park, M., Kreisch, C. D., Dunkley, J., Hadzhiyska, B., and Cyr-Racine, F. "ΛCDM or self-interacting neutrinos: How CMB data can tell the two models apart." Physical Review D 100.6 (2019).
 - Bayesian model comparison suggests Planck CMB data favors neutrino interactions and why.

CONFERENCES Selected Oral Presentations

- Park, M., Kreisch, C. D., Dunkley, J., "ΛCDM or self-interacting neutrinos? how CMB data can tell the two models apart", Best of Posters Presentations, Cosmic Controversies, Chicago, Illinois, October 8, 2019.
- Park, M., Spergel, D., "Constraining Dark Matter Dark Energy Interaction", Undergraduate Summer Research Program 2019 Final Presentations, Department of Astrophysical Sciences, Princeton University, August 8, 2019.
- Park, M., Kreisch, C. D., Dunkley, J., "Cosmological Bounds on Neutrino Self-Interaction", Undergraduate Summer Research Program 2018 Final Presentations, Department of Astrophysical Sciences, Princeton University, August 9, 2018.

Selected Poster Presentations

- Park, M., et al., "Degeneracy of Dark Matter-Dark Energy Interactions: How Many Interactions Are There?", AAS 235th Meeting, Honolulu, Hawaii, January 6, 2020.
- Park, M., et al., "ΛCDM or self-interacting neutrinos? how CMB data can tell the two models apart", Cosmic Controversies, Chicago, Illinois, October 5, 2019.
- Park, M., et al., "ΛCDM or self-interacting neutrinos? how CMB data can tell the two models apart", AAS 234th Meeting, Saint Louis, Missouri, June 11, 2019.

Department of Physics and Astronomy, University of Pennsylvania ADDITIONAL

Teaching Assistant

EXPERIENCES

- Instructed undergraduate intro physics and astrophysics, and graduate general relativity and quantum mechanics
- · Designed and led research methodology workshops for undergraduate researchers

Rockefeller College, Princeton University

Peer Academic Adviser

Sep 2018 – May 2020

Sep 2020 – Present

- Mentored undergraduate students regarding academics, campus life, and career planning
- · Provided one-on-one academic consulting for students in need of specific and personal advice

PUBLICATIONS